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INTRODUCTION

Mathematics is taught as a core subject in almost all undergraduate courses in

applied sciences, especially management and computer science. It is now generally

accepted that a study of any course is incomplete without the knowledge of

mathematics. Due to unfounded fear of the so called ‘difficult’ mathematics, students

tend to shy away from the subject and often, it becomes difficult to persuade them

to take special courses in mathematics. However, the fact is that learning to use

mathematical techniques does not require elaborate mathematical preparation and

the student need not be dismayed by some mathematical manipulations. One learns

through practice. Mathematics is best learnt through systematic learning. The learner

is bound to find it rewarding and exciting, while following the logical arguments

and steps involved.

Mathematics-I is a suitable textbook for the students of BCA. Topics,

such as trigonometry, differentiation, coordinate geometry, quadratic equations

and complex numbers, have been covered in detail in this book.

This book gives a simple and clear presentation of mathematics which will

be useful to beginners. There is a fairly self-contained development of the topics

and the student will find here a starting point which will help gain self-confidence

and familiarity with the subject. While the knowledge of elementary mathematics

is assumed, an attempt has been made to explain simple terms also. The student

will attain proficiency in mathematics, while he proceeds further with different

aspects of his studies.

The book follows the self-instructional mode wherein each unit begins with

an Introduction to the topic. The Unit Objectives are then outlined before going on

to the presentation of the detailed content in a simple and structured format. Check

Your Progress questions are provided at regular intervals to test the student’s

understanding of the topics. A Summary, a list of Key Terms and a set of Questions

and Exercises are provided at the end of each unit for recapitulation.
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UNIT 1 TRIGONOMETRY

Structure
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1.0 INTRODUCTION

Trigonometry is that branch of Mathematics which deals with the measurement of

angles. It is derived from two Greek words ‘trigonon’ (a triangle) and ‘metron’

(a measure), thereby meaning measurement of triangles. However, now this

definition has been modified to include measurement of angles in general, whether
the angles are of a triangle or not. In this unit, you will learn about plane trigonometry

which is restricted to the measurement of angles in a plane.

Trigonometry is related to the calculation of sides and angles of triangles
with the help of trigonometric functions. The most familiar trigonometric functions

are the sine, cosine and tangent. Trigonometric functions were primarily employed

in mathematical tables.

In this unit, you will learn to measure angles and use trigonometric functions.

In addition, you will be introduced to signs and identities along with the standard

ratios of commonly used angles. Finally, this unit will deal with the complex

trigonometric calculations and computing.
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1.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Understand the various ways of measuring angles in a plane

• Explain the various trigonometric functions and use these applications to

solve problems related to angles

• Understand the concepts of identities and signs

• Discover and prove the trigonometric ratios of the standard as well as allied

angles

• Understand the various features of inverse trigonometric functions

• Comprehend and resolve trigonometric equations

• Modify trigonometric ratios of basic computing

1.2 SYSTEM OF MEASURING ANGLES

1.2.1 Angles

An angle is defined as the rotation of a line on one of its extremities in a plane from

one position to another. Two lines are said to be at right angles, if a revolving line
starting from one position to another describes a quarter of a circle. In case the
revolving line moves in anticlockwise direction, then the angle described by it is

positive, else, it is negative. There is no limitation to the size of angles in trigonometry.

Consider the coplanar lines X′OX and YOY′ at right angles to each other
(see Figure 1.1). Now, if the revolving line starts from OX and reaches the position

OA, in the anticlockwise direction, then it is described as a positive angle that is
less than a right angle. If it continues to move in the same direction, then in the
position OB, it has an angle, XOB, which is more than a right angle. In the position
OC, which is it has described an angle XOC, which is more than two right angles,

but less than three right angles. Similarly, in the position OD, it has described an
angle XOD less than four right angles but more than three right angles. Now, if it
continues to revolve in the same direction, then in the position OA, it has described
an angle equal to four right angles along with ∠XOA. In this way, an angle of any

size can be described. Thus, there is no limitation to the size of angles that can be

described in trigonometry.

XX'
O

Y'C D

YB

A

 Figure 1.1 Angles
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Quadrants

The four portions XOY, X′OY, X′OY′ and XOY′ into which a plane is divided are

called first, second, third and fourth quadrants respectively.

1.2.2 Measurement of Angles

To measure angles, a particular angle is fixed and is taken as a unit of measurement,

so that any other angle is measured by the number of times it contains the unit. For

example, if ∠XOY is a right angle, and it is taken as a unit of measurement, then

∠XOX′ is equal to two right angles, as it contains two units.

You will study the following three systems of measurement:

1. Sexagesimal System (English System)

2. Centesimal System (French System)

3. Circular System

1. Sexagesimal System: In this system, a right angle is divided into 90 equal

parts called degrees. Each degree is divided into 60 equal parts called minutes

and each minute is further, subdivided into 60 equal parts called seconds.

Thus, 1 right angle = 90 degrees

1 degree = 60 minutes

1 minute = 60 seconds.

In symbols, a degree, a minute and a second are respectively written as 1º; 1′,

1′′. Thus, 40º 15′ 20′′ denotes the angle which contains 40 degrees 15 minutes

and 20 seconds. The unit of measurement in this system is degree. This system is

called sexagesimal because each unit is divided into 60 parts (sexagesimus means

sixtieth) so that number 60 comes which marking the divisions.

2. Centesimal System: In this system, a right angle is divided into 100 equal

parts called grades. Each grade is divided into 100 equal parts called minutes

and each minute is divided into 100 equal parts called seconds.

Thus, 1 right angle = 100 grades

1 grade = 100 minutes

1 minute = 100 seconds

  In this system the symbols 1g, 1̀,  1̀` stand for a grade, a minute and a

second respectively. Thus, 20g 12̀  85̀ ` denotes the angle which contains 20 grades

12 minutes and 85 seconds. The unit of measurement here is grade. This system is

called centesimal system because the number 100 comes in marking the divisions

(centesimus means hundredth).

Note. The reader should observe the difference in notations of minutes

and seconds in the Sexagesimal and Centesimal systems.

3. Circular System: In this system, the unit of measurement is radian. It is defined

as the angle subtended at the centre of a circle by an Arc that is equal to the radius

of the circle.
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Consider a circle with centre O. Take any point A on it and cut off an Arc AB

that has a length, equal to the radius of the circle. Then, ∠AOB is called a radian

(see Figure 1.2).

The symbol 1c denotes a radian.

O
A

B

Figure 1.2  Radian Angle

It is well known that ‘The circumference of a circle bears a constant

ratio to its diameter.’

This constant ratio is denoted by the Greek letter π (pronounced as ‘pie’).

The value of π correct upto two places of decimal is 3.14 equivalent to 
22

7

and upto six places of decimal is 3.141593, equivalent to 
355

113
.

Radian is a Constant Angle

Consider a circle with centre O. Let A be any point on it and AB be an Arc equal

to the radius OA (see Figure 1.3). Then,

∠AOB

ABArc
=

∠ ′

′

AOA

AAArc

i.e.
∠

∠ ′

AOB

AOA
= 

Arc

Arc

AB

AA′

= 
1
2

Radius

Circumference

= 
Diameter

Circumference
 = 

1

π

Therefore, ∠AOB = 
1

π
 ∠AOA′

= 
1

π
 × 2 right angles

= 
180

π

°
, which is constant as π is a constant.
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Thus one radian = 
180º

π

Hence, π radians = 180º (see Figure 1.3).

O
AA'

B

Figure 1.3  Radian Angle of 180°

1.2.3 Relations between the Three Systems of Measurements

Since 1 right (rt) angle = 90º and 100g = 1 right angle

We have 90º = 100g so that 180º = 200g

But 180º = π radians

Hence, 180º = 200g = πc.

Note: Sometimes the superscript ‘c’ is omitted while writing the angles,

so that angle θ means, an angle of magnitude θ radians. Therefore, we

shall be writing π both for an angle as well as number so that angle π

stands for π radians and number π stands for ratio of circumference of

a circle to its diameter.

Angle subtend by an Arc at the centre of a circle.

To prove that the number of radians in an angle subtended by an Arc of a circle

at the centre is equal to 
A rc

R ad iu s

Proof: Consider a circle with centre O (see Figure 1.4). Let A be any point on it.

Let Arc AB = radius OA. Let C be any point on the circle. Then,

∠AOB = 1 radian

Now,           
∠

∠

AOC

AOB
 = 

Arc

Arc

AC

AB

⇒                ∠AOC = 
Arc

Arc

AC

AB
 × 1 radian

O
A

BC

Figure 1.4  Circle
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So the number of radians in ∠AOC = 
Arc AC

Radius

Note: If θ is number of radians in an angle; l, the length of Arc of the circle

subtending an angle θ at the centre of the circle and r the radius of circle, then

θ = .
l

r




Example 1.1: Express in terms of right angles and also in grades, minutes and

seconds the following angles:

(i) 30º, (ii) 138º 30 ′ , (iii) 35º 47′ 15′′.

Solution: (i) We have 90º = 100g,

Also 90º = 1 rt. angle

So 1º =
10

9
g

and 30º =
1

3
 rt. angle

 = 0.33 rt. angles

So that 30º =
300

9
g  = 33

1

3
g

Now, 1g = 100`

⇒
1

3

g
=

100`

3
 = 

1̀
33

3
Also, 1` = 100`̀

⇒
1̀

3
=

100`̀

3
 = 33.3`̀

⇒ 30º = 33g 33` 33.3`̀ .

(ii) We have, 30` =
1

2

º
 = 0.5º

⇒ 138º 30` = 138.5º

Now, 90º = 1 rt. angle

⇒ 1º =
1

90
 rt. angle

⇒ 138.5º =
138 5

90

.
 rt. angle = 1.5388888 rt. angle

Now 1 rt. angle = 100g

⇒ 1.5388888 rt. angle = 153.88888g

Also, .88888g = 88.888`

and .888` = (0.888 × 100)`̀  = 88.88`̀

⇒ 138.5 = 153g 88` 88.88`̀

(iii) We have, 15`̀ =
15`

60
 = 

1̀

4
 = 0.25`

and 47` 15`̀ = 47.25` = 
47 25

60

. º
 = 0.7875º.

⇒ 35º 47` 15`̀ = 35.7875º



Trigonometry

NOTES

Self-Instructional Material 9

=
35 7875

90

.
 rt. angle

= 0.3976388 rt. angle = 39.76388g

Now, 0.76388g = 76.388`

0.388` = 38.88`̀

⇒ 35º 47` 15`̀ = 39g 76` 38.88`̀

Example 1.2: Express in terms of right angles and also in degrees, minutes

and seconds the following angles:

(i) 120g
(ii) 45g

 35` 24`̀ .

Solution: (i) We have 1g =
9

10

º
.

Also, 100g = 1 rt. angle.

So, 120g = 108º = 
6

5
 rt. angle

(ii) 24`̀ = 0.24`

⇒ 35` 24`̀ = 35.24` = 0.3524g

Thus 45g 35` 24`̀ = 45.3524g

= 0.453524 rt. angle

= (0.453524 × 90)º = 40.81716º

Now .81716º = (0.81716 × 60)` = 49.0296`

and .0296` = (0.0296 × 60)`̀  = 1.776`̀

Hence, 45g 35` 24`̀ = 40º 49` 1.776`̀

Example 1.3: Convert 5º 37` 30`̀  into radians.

Solution: We have, 30`̀  = 
1̀

2

⇒ 37` 30`̀ =
1̀

37
2

 = 
75`

2
 = 

75

2 60×

F
HG

I
KJ

º
 = 

5

8

º

Then 5º 37` 30`̀ = 5
5

8

º
 = 

45

8

º
.

Now 1º =
180

cπ
⇒

45

8

º
 = 

45

180 8

c
π 

× 
 

 = 
32

cπ

Example 1.4: Convert 1g 
1` into radians.

Solution: You have1`=
1

100

g

⇒ 1g 1` =
1

1
100

g

 = 
101

100

g

Now 1g =
200

cπ

⇒
101

100

g

=
101

20000

c
π × 

 
 

 = 0.00505 πc
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Example 1.5. If D, G, C are the number of degrees, grades and radians in an

angle respectively, prove that:
D

90
=

G

100
 = 

2C

π
.

Solution: The given angle = D degrees = 
D

90
 of a rt. angle.

Also, the given angle = G grades = 
G

100
 of a rt. angle.

Further, the given angle = C radians = 
2C

π
 of a rt. angle.

Hence,
D

90
=

G

100
 = 

2C

π

Example 1.6: The number of degrees in a certain angle added to the number

of grades in the angle is 152. Find the angle.

Solution: Let x be the number of degrees in the angle.

Then, the number of grades in the angle will be 
10

9
x .

So, x x+
10

9
= 152

      or
19

9
x = 152, i.e., x = 

152 9

19

×
 = 72.

Example 1.7: The angles of a triangle are in A.P., the number of grades in the

least to the number of radians in the greatest is 40 to π, find the angles in degrees.

Solution: Let the angles of a triangle in A.P. be.

(a – d)º, aº, (a + d)º

Since the sum of angles of a triangle is 180º.

⇒ (a – d) + a + (a + d) = 180º

⇒ a = 60

So, the angles are (60 – d)º, 60º, (60 + d)º

The least angle = (60 – d)º = 
( )60 10

9

− ×F
HG

I
KJ

d
g

The greatest angle = (60 + d)º = (60 )
180

c

d
π 

+ × 
 

Hence, 
( )

( )

60
10

9

60
180

− ×

+ ×

d

d
π

 = 
40

π

Hence,
(60 ) 200

60

d

d

− ×

+
= 40 ⇒(60 – d) × 5 = 60 + d

⇒ 300 – 5d = 60 + d

⇒ 6d = 240 ⇒ d = 40

Hence the angles are (60 – 40)º, 60º, (60 + 40)º or 20º, 60º, 100º.
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Example 1.8: The angles of a pentagon are in A.P. and greatest is three times

the least. Find the angles in grades.

Solution: Let the angles of the pentagon in A.P. be (a – 2d)º, (a – d)º, aº, (a

+ d)º, (a + 2d)º.

Now, sum of the angles of polygon of n sides is

= (2n – 4) right angles

⇒ Sum of angles of pentagon is 6 right angles = 540º

⇒ (a – 2d) + (a – d) + a + (a + d) + (a + 2d) = 540º

⇒ 5a = 540º or a = 108º

Hence, the angles are

     (108 – 2d)º, (108 – d)º, 108º, (108 + d), (108 + 2d)º

The greatest angle = (108 + 2d)°

The least angle = (108 – 2d)º

By hypothesis,

(108 + 2d) = 3(108 – 2d) or 108 + 2d = 324 – 6d

or 8d = 216 or d = 27.

Hence, the angles are 54º, 81º, 108º, 135º, 162º

or 60g, 90g, 120g, 150g, 180g.

Example 1.9: A cow is tied to a post by a rope. If the cow moves along a

circular path always keeping the rope tight and describes 44 ft., when it has traced

out 72º at the centre. Find the length of the rope.

Solution: The cow starts from A and describes an Arc of length

(see Figure 1.5)

       l = 44 ft. = AB

Also ∠AOB = 72º = 72
180

c
π 

× 
 

 = 
2

5

c
π 

 
 

O
A

72°

B

Figure 1.5

If the length of rope be r, then

θ = 
l

r
⇒

2

5

π
 = 

44

r

 ⇒ r = 
44 5

2

×

π
 = 

44 5 7

2 22

× ×

×
 = 35 ft. π =

F
HG

I
KJ

22

7
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Example 1.10: The large hand of a big clock is 3 feet long. How many inches

does its extremity move in 10 minutes time?

Solution: The large hand of a clock starts from A (see Figure 1.6) and describes

an Arc of length l = AB in 10 minutes.

Now, 60 minutes = 360º

⇒ 10 minutes = 36º

Thus∠AOB =36º = 
5

cπ

Also OA =3 feet = r

So θ =
l

r
⇒

π

5
 = 

3

l

⇒ l = 
3

5

π
 = 

3 22

5 7

×

×
 = 

66

35
 feet

⇒ l = 
66

35
 × 12 inches = 22.63 inches.

O
B

A

Figure 1.6

Example 1.11: Find the times between 6 O’clock and 7 O’clock when the

angle betwen minute hand and hour hand is 29º.

Solution: There are two possibilities:

(i)  When the minute hand has  not crossed the hour hand.

(ii) When the minute hand has crossed the hour hand (see Figure 1.7).
12

6

x

12

6

(i) (ii)

Figure 1.7
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(i) Suppose after the time is 6 O’clock the minute hand has moved through xº.

Now, when the minute hand moves through 360º, the hour hand moves

through 30º.

So, in this case the minute hand has moved through,

1

12
×

F
HG
I
KJx

º
 = 

x

12

F
HG
I
KJ
º

This is with respect to hour hand.

Therefore, 29
12

º
º

−
F
HG
I
KJ

x
 + xº = 180º

⇒ x =
151 12

11

×F
HG

I
KJ
º

⇒ x =
151 12

11

1

6

×
×  minutes

=
302

11
 minutes = 27

5

11
 minutes

⇒ Time is 27
5

11
 minutes past 6.

(ii) Proceeding as above,

180
12

29º
º

+
F
HG
I
KJ +

x
= x

⇒ x = (12 × 19)º = 38 minutes

⇒ Time is 38 minutes past 6.

CHECK YOUR PROGRESS

1. When is an angle positive or negative?

2. Define radian.

1.3 TRIGONOMETRIC FUNCTIONS

Trigonometry deals with the problem of measurement, solution of triangles and

periodic functions. The applications of trigonometry to business cycles and other

situations do not specifically involve triangle. They are concerned with the proper-

ties and applications of circular or periodic functions.

1.3.1 Periodic Functions

A function is periodic with period p(p ≠ 0) if f(x + p) = f(x).
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The cyclic curve in Figure 1.8 shows a periodic curve with period p.

Y

x  – 0 p O x0 x  + 0 p

p

X

Figure 1.8  Periodic Curve with Period p

Radian Measure of an Angle

∠LON is called a directed angle which is measured by the rotation about its

vertex O (see Figure 1.9). The angle is positive if the rotation is anticlockwise and

negative if the rotation is clockwise.

L

NO

Figure 1.9  Directed Angle

The radian measure of an angle expresses degrees in terms of radians. π radians,

written πc, corresponds to 180º.

Similarly, 2πc corresponds to 360º. Usually, c is not written to express radian

measures (see Figure 1.10).

X

Y

O

– 90°
or

– π/2

Y′

Y

X
O

90° or  π/2

180° or π

X

Y

X

– 135°

or

– 3 π/4

Y

X
            225°

or

5 π/4

Y

X

405°or 9 /4π

Figure 1.10  Measures of Angle
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An angle αo can be converted into radians by multiplying it by π/180. Thus

αo = α
π

180
 radians

Conversely θ radians can be written as:

θc = α
π

180
 degrees

Example 1.12: Convert from degree to radian and radian to degree.

(i) 45° to radian (ii) 90° to radian (iii) π/6 radian to degree

(iv) 60 to radian (v)  
5

12

π
 radian to degree (vi)

4

3

π
 radian to degree

(vii)
5

16

π
−  radian to degree  (viii) – 30° radian

Solution: (i) 45º = 
πc

4
(ii)

πc

2
 = 90º (iii)

πc

6
 = 30º

  (iv) 60º = 
πc

3
(v)

5

12

πc

 = 75º (vi)
4

240
3

cπ
= °

(vii)
−5

6

πc

 = – 150º    (viii) – 30º = −
πc

6
.

Measurement of Angles

Two systems of measuring and comparing angles may be considered.

In the sexagesimal system, a right angle obtained by a quarter revolution is divided

into 90 equal parts and each part equals one degree, written 1º.

1º = 60 minutes written 60′

1′ = 60 seconds written 60′′

In the circular measure system, the unit is a radian. A radian is the measure of the

angle made at the centre of a circle by an Arc whose length equals the radius of the

circle.

The notation used is, 1 radian = 1c

The circumference of a circle equals 2πr where r is the radius of the circle. It can

be shown that:

1

2
 π radians =

π

2

F
HG
I
KJ

c

 = 90º

Therefore, Ic =
180

π

F
HG
I
KJ or 1º = 

π

180

F
HG
I
KJ

c
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 Since  1c is calculated by taking π = 3.141593  and it comes to 57.2958 and thus,

1c = 57º 17′ 45′′

                Normally, approximate value of π is taken as, π = 
22

7
 or 3.142, 180º

= π radians, 360º = 2π radians

π

10
 radians = 18º, 

π

6
 radians = 30º

Area of a circle

The area of a circle with radius r is (see Figure 1.11) πr
2.

The area of a sector AOB subtending an angle θ at the centre is 
1

2

2
r θ.

B

ArO

r

θ

Figure 1.11  Area of a Circle

Length of the Arc AB = rθ.

Example 1.13: An Arc AB = 55 cm subtends an angle of 150º at the centre of a

circle. Find the area of the sector AOB.

Solution: Given θ = 150º = 150
180

×
π

 = 
5

6

22

7
×  = 

55

21

F
HG
I
KJ

c

Arc AB = rθ = r ×
55

21
 = 55 ∴ r = 21

Therefore, Area of AOB = 
1

2

2
r θ = 

1

2
21 21

55

21
× × ×  = 

1155

2
 sq. cm.

Area of circle = πr
2 = 

22

7
21 21× ×  = 1386 sq. cm.

1.3.2 Trigonometric Ratios

Take a point P(x, y) on the line OR which makes an angle θ with the x-axis

(see Figure 1.12).

In ∆OPM, OM = x and MP = y

The hypotenuse OP = r



Trigonometry

NOTES

Self-Instructional Material 17

Y

X

y

Mx

r

P

R

O

( )x, y

Figure 1.12  Trigonometric Ratios

OM is the side adjacent to angle θ.

MP is the side opposite angle θ.

There are six trigonometric ratios:

Sine of θ is sin θ =
Opp. side

Hypotenuse
 = 

MO

OP
 = 

y

r

Cosine of θ is cos θ =
Adjacent side

Hypotenuse
 = 

OM

OP
 = 

x

r

Tangent of θ is tan θ =
Opp. side

Adj. side
 = 

MP

OM
 = 

y

x

Cosecant of θ is cosec θ =
1

sin θ
 = 

r

y

Secant of θ is sec θ =
1

cos θ
 = 

r

x

Cotangent of θ is    cot θ =
1

tan θ
 = 

x

y

Note: The trigonometric ratios remain the same wherever the point P is taken

on OR.

1.3.3 Values of Trigonometric Functions of Standard Angles

We can find the numerical values of sin 45º, cos 30º, etc., and use them whenever

required. Tables are available to find the values of trigonometric functions of all

angles but it is useful to remember some standard values.

You can find sin 45º or sin
π

4

Note that in the right angled triangle POM.
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P

O M

a x

45

OP
2 = OM

2 + PM
2

If, ∠POM = 45º = ∠MOP, OM = MP = x

If OP = a then, a2
 = 2x

2 or a = 2 x or x = a / 2

sin 45º =
PM

OP
 = 

x

a
 = 

a

a

/ 2
 = 

1

2

∴ cosec 45º = 2

Similarly, cos 45º =
1

2
, sec 45º = 2

tan 45º = 1, cot 45º = 1

For an angle of 30º, sin 30º = 
1

2

These results can be put in a tabular form and remembered.

  sin 0º = 0   cos 0º = 1 tan 0º = 0

sin 30º = 1/2 cos 30º = 3 2/ tan 30º = 1 3/

sin 45º = 1 2/ cos 45º = 1 2/ tan 45º = 1

sin 60º = 3 2/ cos 60º = 1/2 tan 60º = 3

sin 90º = 1 cos 90º = 0 tan 90º = ∞

The trigonometric ratios for other angles can be found by suitable methods.

Tables for trigonometric ratios are available. It may be remembered that

        • sin (90º – θ) = cos θ 

         •  cos (90º – θ) = sin θ 

        •   tan (90º – θ) = cot θ

Also, the following identities can be easily proved:

sin

cos

θ

θ
= tan θ,  

cos

sin

θ

θ
 = cot θ sin2 θ + cos2 θ = 1

  sec2 θ – tan2 θ = 1 cosec2 θ – cot2 θ = 1

For example,  (i)   2tan2 45º + 3 tan2 60º = 2 × (1)2 + 3 3 2( )  = 2 + 9 = 11.

                        (ii)  sin2 30º + 16 cos2 60º = 4
1

2
16

1

2

2 2F
HG
I
KJ +
F
HG
I
KJ  = 1 + 4 = 5.
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                        (iii) 4cos3 30º – 3cos 30º = 0 and

                              tan 45º – 2sin2 30º – cos 60º = 0

The trigonometric ratios are useful in finding the angles and lengths of the sides

of a triangle and for a variety of other purposes.

1.3.4 Signs of Trigonometric Ratios

As θ increases from 0 to 2π,

                sin θ rises from 0 to 1 in Quadrant I (Q. I)

falls from 1 to 0 in Quadrant II (Q. II)

falls from 0 to – 1 in Quadrant III (Q. III)

rises from – 1 to 0 in Quadrant IV (Q. IV)

Similarly, cos θ falls from 1 to 0 in Q. I

falls from 0 to – 1 in Q. II

rises from – 1 to 0 in Q. III

rises from 0 to 1 in Q. IV

tan θ rises from 0 to ∞ in Q. I

rises from – ∞ to 0 in Q. II

rises from 0 to ∞ in Q. III

rises from – ∞ to 0 in Q. IV

Therefore, as shown in Figure 1.13, all trigonometric ratios are positive in Q. I

• sin θ and cosec θ are positive in Q. II

• tan θ and cot θ are positive in Q. III

• cos θ and sec θ are positive in Q . IV

Q. II

Only sin , cosec  positive

Rest negative

θ θ

Q. I

All positive

Only tan , cot  positive

Rest negative

θ θ

Q. III

Only cos , sec  positive

Rest negative

θ θ

Q. IV

O
X

Y

Figure 1.13  Positive and Negative Trigonometric Ratios
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The following results can be verified and used when required:

sin (– θ) = – sin θ

cos (– θ) = cos θ

tan (– θ) = –tan θ

The angle – θ is in the fourth quadrant in which cos (– θ) and Sec(–θ) are positive.

sin (90 – θ) = cos θ The angle 90 – θ is in the first quadrant. All ratios

cos (90 – θ) = sin θ are positive.

tan (90 – θ) = cot θ

sin (90 + θ) = cos θ The angle 90 + θ is in the second quadrant. Only

cos (90 + θ) = – sin θ sin (90 + θ) is positive.

tan (90 + θ) = – cot θ

sin (180 – θ) = sin θ The angle 180 – θ is in the second quadrant. Only

cos (180 – θ) = – cos θ sin (180 – θ) is positive.

tan (180 – θ) = – tan θ

sin (180 + θ) = – sin θ The angle 180 + θ is in the third quadrant. Only

cos (180 + θ) = – cos θ tan (180 + θ) is positive.

tan (180 + θ) = + tan θ

sin (360 – θ) = – sin θ Same rule as for the angle, – θ.

cos (360 – θ) = cos θ

tan (360 – θ) = – tan θ

sin (360 + θ) = sin θ

cos (360 + θ) = cos θ Same rule as for the angle θ.

tan (360 + θ) = tan θ

Ratios of other angles can be expressed in terms of the above ratios.

sin 3
2

π
θ−

F
HG

I
KJ = sin (270 – θ) = sin (90 + 180 – θ)

= cos (180 – θ) = – cos θ

or sin (270 – θ) = sin (180 + 90 – θ)

= – sin (90 – θ) = – cos θ

or sin (270 – θ) = sin (270 – θ – 360)

= sin (– 90 – θ) = sin {– (90 + θ)} = – sin (90 + θ)

= – cos θ
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or sin (270 – θ) = – sin (θ – 270)

= – sin (θ – 270 + 360) = – sin (90 + θ) = – cos θ

or sin (270 – θ) = – cos [90 + (270 – θ)] = – cos (360 – θ) = – cos θ

sin
3

2
π = sin (π + π/2) = − sin

π

2
 = – 1

cos
5

4
π = −

1

2
, sin

5

4
π  = −

1

2

cos
7

4
π =

1

2
, sin

7

4
π  = −

1

2

cos
7

6
π = −

3

2
, sin

7

6
π  = −

1

2

cos
11

6
π =

3

2
, sin

11

6
π  = −

1

2

cos
2

3
π = −

1

2
sin

5

3
π  = −

3

2

cos −
F
HG
I
KJ

3

4
π = −

1

2
, sin −

F
HG
I
KJ

4

3
π  = 

3

2

 If   sin θ = −
3

5
, then  cos θ = 

4

5
,  tan θ = −

3

4

cosec θ = −
5

3
,   sec θ = 

5

4
, cot θ = −

4

3

Inclination and Slope of a Line

The inclination of a line corresponds to the angle made by the line with the hori-

zontal axis (see Figure 1.14).

If a line is horizontal or parallel to the x-axis its inclination is zero, i.e., θ = 0. If a

line is perpendicular to the x-axis, θ = 90º.

Y

X

θ

O

Y

P

X
MAO

45°

       (a)  (b)

Figure 1.14  Inclination and Slope of a Line
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If the inclination of a line is θ, the slope of the line is tan θ.

The slope of a line with 45º inclination is tan 45º = 1. Alternatively, since ∠PAM

= 45º, AM  = MP and tan 45º = MP/AM = 1.

For example the slope of a line with inclination (i) 30º (ii) 60º (iii) 0º (iv) 90º is

(i) tan 30º = 
1

3
(ii) tan 60º = 3 (iii) tan 0 = 0    (iv) tan 90º = ∞

Note that parallel lines have the same inclination and hence, have equal slopes

(see Figure 1.15).

The slope of a curve at a point P (see Figure 1.16) is the slope of the tangent

drawn at the point P.

Y

O
X

P

θ

Y

O
X

θθ

 Figure 1.15 Parallel Lines               Figure 1.16  Slope of a Curve at a Point P.

The intercept of a line on the y-axis is the distance from the origin to the point of

intersection on the y-axis.

OB is the y intercept.

Similarly, OA is the x intercept (see Figure 1.17).

Y

O
X

A

B

Figure 1.17  Intercept of a Line

The intercept may be positive or negative. Zero  intercept implies that the line

passes through the origin.

Note: We know that the trigonometric ratios;

sin θ = 
MP

OP
, cos θ = 

OM

OP
, tan θ = 

MP

OM
.
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As OP rotates in a counterclockwise direction, the angle θ changes

(see Figure 1.18). While OP remains constant, MP and OM change. Thus, the

three ratios are functions of θ. The functions sin θ, cos θ, tan θ being related to a

circle are called circular functions. Being also related to a triangle, they are often

referred to as trigonometric functions. They are periodic with the fundamental

period 2π.

Y

P

X
MO

Figure 1.18  Counterclockwise Rotation

The graph (see Figure 1.19) of the sine function f(θ) = sin θ  repeats itself at

intervals of 2π.

f ( ) = sin θ θ

1

0

– 1

π/2 π 3 /2π 2π 5 /2π 2π θ

Figure 1.19  Sin θ  Repeating at Intervals 2π

Since, sin (θ + 2π) = sin (θ + 360º) = sin θ

cos (θ + 360) = cos θ

It means that sin θ and cos θ are periodic functions each with period 2π.

In general, sin (θ + 2nπ) = sin θ

Similarly, cos (θ + 2nπ) = cos θ

when n is any integer.

Note: As θ increases from a

(i) 0 to 
π

2
, sin θ rises from 0 to 1

(ii)
π

2
 to π, sin θ falls from 1 to 0

(iii) π to 3
π

2
, sin θ falls from 0 to – 1
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(iv)
3

2

π
 to 2π, sin θ rises from – 1 to 0

θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

sin θ 0 1 2/ 1 1 2/ 0 −1 2/ – 1 −1 2/ 0

f ( ) = cos θ θ

– /2π 0 π/2 π 3 /2π 3π 5 /2π
θ

Figure 1.20  Periodic Graph of cos θ

The graph (see Figure 1.20) of f (θ) = cos θ is also periodic.

However, cos 0 = 1 and cos π/2 = 0.

The amplitude of a sine wave is the absolute value of one half of the difference

between the greatest and the least ordinate of the wave. The amplitude in each of

the sine and cosine graph is,

1/2{1 – (– 1)} = 1

The amplitude of f(t) = 5sin t is 5. Each ordinate is 5 times the ordinate of

f(t) = sin t.

1.3.5 Fundamental Period and Phase

The fundamental period of a periodic function like f(t) = sin bt or g(t) = cos bt is

given by,

T =
2π

| |b

sin bt = sin (bt + 2π) because the period is 2π.

= sin b t
b

+
F
HG

I
KJ

2π
 = f t

b
+
F
HG

I
KJ

2π

The phase of f(t) = sin (t – p) or f(t) = cos (t – p) is defined by |p|

The phase of f(t) = sin t +
F
HG

I
KJ

1

2
π  is given by |p| = −

1

2
π  = 

π

2

For the function,

f (t) = 4cos (2t – π/2) = 4cos 2(t – π/4)

The amplitude is 4 and phase 
π

4
.
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The fundamental period is 
2

2

π
 = π.

The amplitude of 2 sin
1

2
π t  is 2 and the fundamental period is 

2

1 2

π

π( / )
 = 4.

Example 1.14: If f(x) = sin kx is periodic, determine the period for f(x).

Solution:  f (x) = sin (kx) = sin (kx + 2π) = sin k(x + 2π/k) = f (x + 2π/k)

The period is 2π/k.

This is also true for f(x) = cos kx. The period is 2π/k.

The period for f(x) = tan kx is π/k.

Example 1.15: Find the period, if any, for f(x) = sin x
2.

Solution: If the period is t, f(x + t) = sin (x + t)2.

Also f(x) = sin x
2 = sin (x2 + 2π)

∴ (x + t)2 = x
2 + 2π

∴ 2tx + t2 = 2π          which does not give a fixed value of t.

f(x) = sin x
2

This function is not periodic.

Periodic Functions and Graphs

Graph of f (θ) = sin θ + 2 cos θ (see Figure 1.21)

f (0) = 0 + 2 = 2, f
π

4

F
HG
I
KJ  = 

1

2
2

1

2
+ ⋅  = 2.1

f (π) = 0 – 2 = – 2, f
3

4
π
F
HG
I
KJ  = − −

1

2

2

2
 = – 0.7

f (2π) = 0 + 2 = 2, f
5

4
π
F
HG
I
KJ  = − −

1

2

2

2
 = – 2.1

f2 ( ) = 2 cos θ θ

f1 ( ) = sin θ θ

2

1

0

– 1

– 2 f ( ) = sin + 2 cosθ θ  θ

2π ππ/2 3 /2π
θ

Figure 1.21  Periodic Functions and Graphs
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Graph  as shown in Figure 1.22 of f(t) = e– t sin 2t t ≥ 0

|f (t)| ≤ e
– t because |sin 2t| ≤ 1 and e– t > 0 for all t

i.e., – e
– t ≤ f (t) ≤ e– t, i.e., the graph of f(t) lies between the graphs of f

1
(t) = – e

–

t and f
2
(t) = e– t.

f  t  = e2 ( ) –t

f t e t ( ) =  sin 2 –t

O π/4 π/2 3 /4π π

f  t  = – e1 ( ) –t

t

Figure 1.22  Graph of f(t)

There are damped oscillations. In the limit, the amplitude is zero.

Trigonometric Ratios

Given any one trigonometric ratio, the other ratios can be found by using the

identities provided previously.

Example 1.16: cos θ = −
1

2
, find other ratios.

Solution: Note that θ lies in Q. II

To find other ratios, use

sin θ = 1 2− cos θ  = 1
1

4
−  = 

3

4
 = ±

3

2

We have taken the value + 3 2/  since θ lies in Q. II

tan θ = sin θ/cos θ = ( / ) / ( / )3 2 1 2−  = − 3

cosec θ = 1/sin θ = 2 3/

sec θ = 1/cos θ = – 2

cot θ = 1/tan θ = −1 3/

Example 1.17: Given: tan θ = 
3

4
, find other ratios.

Solution: Note that θ lies in Q. III

We have, sec2 θ = 1 + tan2 θ = 1 + 9/16 = 
25

16
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sec θ = ± 
5

4

sec θ = −
5

4
 since θ lies in Q. III

cos θ = – 4/5

sin θ = 1 2− cos θ  = 1
16

25
−  = 

9

25
 = −

3

5
 (Q. III)

cot θ = 4/3, cosec θ = – 5/3.

Exmaple 1.18: Show 4cot2 45º – sec2 60º + sin2 30º = 
1

4
.

Solution: 4 × (1)2 – (2)2 +

2
1

2

 
 
 

 = 4 – 4 + 
1 1

4 4
=

Identities

In the forthcoming exercises, the following identities will be useful.

(i) sin2
A + cos2

A = 1, (ii) sec2
A = 1 + tan2

A, (iii) cosec2
A = 1 + cot2

A

Example 1.19: Prove that: 
1

1

−

+

sin

sin

A

A
 = sec A – tan A

Solution: LHS =
( sin )( sin )

( sin )( sin )

1 1

1 1

− −

+ −

A A

A A
 = 

( sin )

sin

1

1

2

2

−

−

A

A

=
( sin )

cos

1 2

2

− A

A
 = 

1 − sin

cos

A

A
 = 

1

cos

sin

cosA

A

A
−

=  sec A – tan A

Example 1.20: Prove that 
cos

tan

sin

cot

A

A

A

A1 1−
+

−
 = sin A + cos A.

Solution: Put tan A = sin A/cos A and cot A = cos A/sin A

LHS =
cos cos

cos sin

sin sin

sin cos

A A

A A

A A

A A

⋅

−
+

−
 = 

cos

cos sin

sin

cos sin

2 2
A

A A

A

A A−
−

−

=
cos sin

cos sin

2 2
A A

A A

−

−
 = 

(cos sin )(cos sin )

cos sin

A A A A

A A

+ −

−
 = cos A + sin A.

Compound Angles

To find sin (A + B).

From a point P on OP′ draw PQ ⊥ OQ′ (see Figure 1.23).

From Q draw QK ⊥ PM.
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PM =QN + PK

PM

OP
=

QN

OP

PK

OP
+

= 
QN

OQ

OQ

OP

PK

PQ

PQ

OP
⋅ + ⋅

= sin A cos B + cos A sin B

Y

O M N
X

A

B

P′

P

K Q

Q′

Figure 1.23  Compound Angles

Since, ∠KPQ = ∠Α

sin (A + B) =
PM

OP
 = sin A cos B + cos A sin B ...(1.1)

Similarly,

cos (A + B) =
OM

OP
 = 

ON

OP
 – 

MN

OP
 = 

ON

OQ

OQ

OP

KQ

PQ

PQ

OP
⋅ − ⋅

∴ cos (A + B) = cos A cos B – sin A sin B ...(1.2)

Replacing B by – B in the preceding results,

sin (A – B) = sin A cos B – cos A sin B ...(1.3)

cos (A – B) = cos A cos B + sin A sin B ...(1.4)

Also tan (A + B) =
sin ( )

cos ( )

A B

A B

+

+
 = 

sin cos cos sin

cos cos sin sin

A B A B

A B A B

+

−

Dividing the numerator and denominator by cos A cos B, we have

tan (A + B) =

sin

cos

sin

cos

sin sin

cos cos

A

A

B

B

A B

A B

+

−1

 = 
tan tan

tan tan

A B

A B

+

−1
...(1.5)

Similarly, tan (A – B) =
tan tan

tan tan

A B

A B

−

+1
...(1.6)
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It can be seen by putting A + B = C, and A – B = D that

sin C + sin D = 2
2 2

sin cos
C D C D+ −

;

sin C – sin D = 2
2 2

cos sin
C D C D+ −

;

cos C + cos D = 2
2 2

cos cos
C D C D+ −

;

cos C – cos D = −
+ −

2
2 2

sin sin
C D C D

.

We know that, sin (A + B) = sin A cos B + cos A sin B ...(1.7)

Put A = B, then sin (2A) = sin A cos A + cos A sin A

We have the result sin 2A = 2 sin A cos A ...(1.8)

On the same lines, using the result for cos (A + B) we can prove

cos 2A = cos2  – sin2
A = 2 cos2

A – 1 = 1 – 2 sin2
A ...(1.9)

sin 3A = sin (2A + A) = sin 2A cos A + cos 2A sin A

= 2 sin A cos A + (1 – 2 sin2
A) sin A

= 2 sin A(1 – sin2
A) + (1 – 2 sin2

A) sin A

= 2 sin A – 2 sin3
A + sin A – 2 sin3

A

∴ sin 3A = 3 sin A – 4 sin3
A ...(1.10)

Similarly, cos 3A = cos (2A + A) = 4 cos3
A – 3 cos A ...(1.11)

tan 3A = tan (2A + A) = 
tan tan

tan tan

2

1 2

A A

A A

+

−

=

2

−
+

−
2

−

tan

tan
tan

tan

tan
tan

A

A
A

A

A
A

1

1
1

2

2

 = 
2 + −

− −

tan tan tan

tan tan

A A A

A A

3

2 21 2

= 
3

1 3

3

2

tan tan

tan

A A

A

−

−
...(1.12)

In the result cos 2A = cos2
A – sin2

A, if we replace A by 
A

2
 we have

cos A = cos sin2 2

2 2

A A
−  = 2

2
12cos

A
−  = 1 2

2

2− sin
A

...(1.13)

Similarly, sin A = 2
2 2

sin cos
A A

...(1.14)
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                       tan A  =
2 2

1 22

tan /

tan /

A

A−
 = 

2

1 2

t

t−
 where t = tan

A

2
...(1.15)

The following additional results are useful and may be derived:

Since cos 2A = 2 cos2
A – 1 = 1 – 2 sin2

A

∴ cos2
A =

1 2

2

+ cos A
or cos A = ±

+1 2

2

cos A

sin2
A =

1 2

2

− cos A
or sin A = ±

−1 2

2

cos A

Summary of Some Important Results

I. sin (A ± B) = sin A cos B ± cos A sin B

cos (A ± B) = cos A cos B ∓  sin A sin B

sin (A + B + C) = sin A cos B cos C + cos A sin B cos C

+ cos A cos B sin C – sin A sin B sin C

cos (A + B + C) = cos A cos B cos C – cos A sin B sin C – sin A cos B

sin C

– sin A sin B cos C

tan (A + B) =
tan tan

tan tan

A B

A B

+

−1
,   tan (A – B) = 

tan tan

tan tan

A B

A B

−

+1

tan (A + B + C) =
tan tan tan tan tan tan

tan tan tan tan tan tan

A B C A B C

B C C A A B

+ + −

− − −1

cot (A + B) =
cot cot

cot cot

A B

B A

−

+

1
         cot (A – B) = 

cot cot

cot cot

A B

B A

+

−

1

II.  sin 2A = 2 sin A cos A = 
2

1 2

tan

tan

A

A+
              sin A = 

2 2

1 22

tan /

tan /

A

A+

 cos 2A = 

= −

= −

= −

R
S|

T|

U
V|

W|

cos sin

sin

cos

2 2

2

2

1 2

2 1

A A

A

A

 = 
1

1

2

2

−

+

tan

tan

A

A
; cos A = 

1 2

1 2

2

2

−

+

tan /

tan /

A

A

 tan 2A = 
2

1 2

tan

tan

A

A−
 = 

1

1

2

2

−

+

cos

cos

A

A
;                tan A = 

2 2

1 22

tan /

tan /

A

A−

1 – cos 2A = 2 sin2
A

1 + cos 2A = 2 cos2
A

sin 3A = 3 sin A – 4 sin3
A

cos 3A = 4 cos3
A – 3 cos A
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tan 3A =
3

1 3

3

2

tan tan

tan

A A

A

−

−

III. Conversion of product into sum:

sin A cos B =
1

2
{sin ( ) sin ( )}A B A B+ + −

cos A sin B =
1

2
{sin ( ) sin ( )}A B A B+ − −

cos A cos B =
1

2
{cos ( ) cos ( )}A B A B+ + −

sin A sin B = − + − −
1

2
{cos ( ) cos ( )}A B A B

IV. Conversion of sum into product

sin C + sin D = 2
2 2

sin cos
C D C D+ −

sin C – sin D = 2
2 2

cos sin
C D C D+ −

cos C + cos D = 2
2 2

cos cos
C D C D+ −

cos C – cos D = −
+ −

2
2 2

sin sin
C D C D

V. cos A/2 = ±
+1

2

cos A
...(1.16)

sin A/2 = ±
−1

2

cos A
...(1.17)

tan A/2 = ±
−

+

1

1

cos

cos

A

A
...(1.18)

Also, if we write tan A/2 = t, we have

sin A =
2

1 2

t

t+
,   cos A = 

1

1

2

2

−

+

t

t
,   tan A = 

2

1 2

t

t−
...(1.19)

tan
A

2
=

sin /

cos /

A

A

2

2
 = 

sin / cos /

cos / cos /

A A

A A

2 2 2

2 2 2

⋅

⋅

= 
sin

cos /

A

A2 22
 = 

sin

cos

A

A1 +
.
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Example 1.21: Prove: (i) tan2
A cosec A = 

sin

sin

A

A1 2−

(ii)  
sec

sin

2

2

1A

A

−
 = 

1
2cos A

Solution: (i) 
sin

cos sin

A

A A

F
HG
I
KJ

2
1

 = 
sin

cos sin

2

2

1A

A A
⋅  = 

sin

cos

A

A
2

 = 2

sin

1 sin

A

A−

   (ii) 
sec

sin

2

2

1A

A

−
 = 

tan

sin

2

2

A

A
 = 

sin

cos sin

2

⋅
A

A A
2 2

1
 = 

1
2cos A

Example 1.22: Given q cos θ = p sin θ, find the value of 
p q

p q

cos sin

cos sin

θ θ

θ θ

+

−
.

Solution: Since q cos θ = p sin θ cos θ 
p

q
 sin θ and hence, p cos θ = 

p

q

2

sin θ ,

the expression becomes

p

q
q

p

q
q

2

2

sin sin

sin sin

θ θ

θ θ

+

−

 = 

p

q
q

p

q
q

2

2

+
F
HG

I
KJ

−
F
HG

I
KJ

sin

sin

θ

θ

 = 
p q

p q

2 2

2 2

+

−
.

Example 1.23: Prove that sin (A + B) sin (A – B) = sin2
A – sin2

B.

Solution: LHS = (sin A cos B + cos A sin B)(sin A cos B – cos A sin B)

= sin2
A cos2

B – cos2
A sin2

B

= sin2
A (1 – sin2

B) – (1 – sin2
A) sin2

B

= sin2
A – sin2

A sin2
B – sin2

B + sin2
A sin2

B = sin2
A –sin2

B.

Example 1.24: Prove that 
cos º sin º

cos º sin º

9 9

9 9

+

−
 = tan 54º.

Solution: Divide Numerator and Denominator by cos 9º

LHS =
1 9

1 9

+

−

tan º

tan º
 = 

tan º tan º

tan º tan º

45 9

1 45 9

+

−
(∵ tan 45º = 1)

= tan (45º + 9º) = tan 54º

Example 1.25: Prove that 8
14

3

14

5

14
sin sin sin

π π π
 = 1.

Solution: LHS = 8
2 14 2

3

14 2

5

14
cos cos cos

π π π π π π
−
F
HG

I
KJ −
F
HG

I
KJ −
F
HG

I
KJ

=8
3

7

2

7 7
cos cos cos

π π π
 = 

8

2
7

2
7 7

2

7

3

7sin

sin cos cos cos
π

π π π π
⋅

[2 sin A cos A = sin 2A]



Trigonometry

NOTES

Self-Instructional Material 33

=
8

2 7

2

7

2

7 7sin /
sin cos cos

π

π π π3
 = 

8

4
7

4

7

3

7sin

sin cos
π

π π

=
8

8 7 7sin /
sin sin

π
π

π
+

F
HG

I
KJ  = 

1

7
0 7

sin /
( sin / )

π
π+  = 1.

Example 1.26: If A + B + C = π, show that:

cos 2A + cos 2B + cos 2C = – 1 – 4 cos A cos B cos C

Solution: LHS = (2 cos2
A – 1) + 2 cos (B + C) cos (B – C)

Since        B + C = π – A, cos (B + C) = cos (π – A) = – cos A

LHS = – 1 + 2 cos2
A – 2 cos A cos (B – C)

= – 1 + 2 cos A (cos A – cos (B – C))

= – 1 – 2 cos A (– cos (B + C) – cos (B – C))

= – 1 – 2 cos A 2 cos B cos C

= – 1 – 4 cos A cos B cos C.

Example 1.27: If cos θ + sin θ = 2  cos θ, show cos θ – sin θ = 2  sin θ.

Solution: Dividing by cos θ, we have

1 + tan θ = 2  or tan θ = 2  – 1 < 1, i.e., sin θ < cos θ

Squaring, cos θ + sin θ = 2  cos θ

cos2 θ + sin2 θ + 2 cos θ sin θ = 2 cos2 θ

∴ cos2 θ – sin2 θ – 2 cos θ sin θ = 0

∴ (cos θ – sin θ)2 = 2 sin2 θ

∴ cos θ – sin θ = ± 2  sin θ

∴ cos θ – sin θ = 2  sin θ

(– 2  sin θ not possible because tan θ < 1)

Example 1.28: Given a = sin A + sin B, b = cos A + cos B, show that:

  tan 
A B−

2
 = 

4 2 2

2 2

− −

+

a b

a b
.

Solution: We have:

a
2 + b2 = (sin A + sin B)2 + (cos A + cos B)2

= sin2
A + 2 sin A sin B + sin2

B + cos2
A + 2 cos A cos B +

   cos2
B
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= 1 + 2 (sin A sin B + cos A cos B) + 1 = 2 + 2 cos (A – B)

4 2 2

2 2

− −

+

a b

a b
=

4
1

2 2
a b+

−  = 
4

2 1
1

( cos ( ))+ −
−

A B

=
1

1

− −

+ −

cos ( )

cos ( )

A B

A B
 = 

2
2

2
2

2

2

sin

cos

A B

A B

−

−
 = tan2

2

A B−

∴
4 2 2

2 2

− −

+

a b

a b
= tan

A B−

2

Example 1.29: Show 
cos cos

sin sin

sin sin

cos cos

A B

A B

A B

A B

n n

+

−

F
HG

I
KJ +

+

−

F
HG

I
KJ  = 2

2
cotn A B−

or 0.

Solution: LHS = 
2

2 2

2
2 2

2
2 2

2
2 2

cos cos

cos sin

cos cos

sin sin

A B A B

A B A B

A B A B

A B A B

n n
+ −

+ −

F

H
GGG

I

K
JJJ

+

+ −

−
+ −

F

H
GGG

I

K
JJJ

= 2
2

cotn A B−
if n is even

= 0        if n is odd.

CHECK YOUR PROGRESS

3. State the formula for the area of a circle.

4. What is the formula for the area of a sector of a circle?

5. What is the measure of inclination in the following cases:

(i)   A line is either horizontal or parallel to the x-axis?

(ii) A line is perpendicular to the x-axis?

6. What is the fundamental period of a periodic function like f(t) = sin bt or

g(t) = cos bt?

1.4 IDENTITIES AND SIGNS

Let a revolving line OP start from OX in the anticlockwise direction and trace out

an angle XOP. From P draw PM ⊥ OX. Produce OX, if necessary. (see Figure

1.24). Let ∠XOP = θ.
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q

O M
X

P

Figure 1.24  Identities and Signs

Then, (1) 
MP

OP
 is called sine of angle θ and is written as sin θ.

(2) 
OM

OP
 is called cosine of angle θ and is written as cos θ.

(3) 
MP

OM
 is called tangent of angle θ and is written as tan θ.

(4) 
OM

MP
 is called cotangent of angle θ and is written as cot θ.

(5) 
OP

OM
 is called secant of angle θ and is written as sec θ.

(6) 
OP

MP
 is called cosecant of angle θ and is written as cosec θ.

These ratios are called Trigonometrical Ratios of the angle θ.

Notes:

1. It follows from the definition that,

sec θ = 
1

cos θ
, cosec θ = 

1

sin θ
, cot θ = 

1

tan θ
,

tan θ = 
sin

cos

θ

θ
, cot θ = 

cos

sin

θ

θ
.

2. Trigonometrical ratios are same for the same angle. For, let  P′ be

any point on the revolving line OP. Draw P′M′ ⊥ OX. Then triangles

OPM and OP′M′ are similar, so 
MP

OP
 = 

M P

OP

′ ′

′
, i.e., each of these

ratios is sin θ.

Therefore, whatever be the triangle of reference (i.e., ∆OPM or

∆OP′M′) might be, we find that sin θ remains the same for a particular

angle θ.

It can be similarly shown that no trigonometrical ratio depends

on the size of triangle of reference.

3. (sin θ)n is written as sinn θ, where n is positive. Similar notation holds

good for other trigonometrical ratios.

4. sin–1 θ denotes that angle whose sine is θ. Note that sin–1 θ does not

stand for 
1

sin θ
. Similar notation holds good for other trigonometrical

ratios.
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For any Angle θθθθ,

1. sin2 θ + cos2 θ = 1

2. sec2 θ = 1 + tan2 θ

3. cosec2 θ = 1 + cot2 θ

Proof: Let the revolving line OP start from OX and trace out an angle θ in the

anticlockwise direction. From P draw PM ⊥ OX. Produce OX, if necessary.

Then, ∠XOP = θ.

(1) sin θ = 
MP

OP
, cos θ = 

OM

OP

Then, sin2 θ + cos2 θ = 
( ) ( )

( )

MP OM

OP

2 2

2

+
 = 

( )

( )

OP

OP

2

2
 = 1.

(2) sec θ = 
OP

OM
, tan θ = 

MP

OM

Then, 1 + tan2 θ = 1
2

2
+

( )

( )

MP

OM

 = 
( ) ( )

( )

OM MP

OM

2 2

2

+

= 
( )

( )

OP

OM

2

2
 = 

OP

OM

F
HG
I
KJ

2

 = (sec θ)2 = sec2 θ

(3) cot θ = 
OM

MP
, cosec θ = 

OP

MP
.

Then, 1 + cot2 θ = 1

2

+
F
HG
I
KJ

OM

MP
 = 

( ) ( )

( )

MP OM

MP

2 2

2

+

=
( )

( )

OP

MP

2

2
 = 

OP

MP

F
HG
I
KJ

2

 = (cosec θ)2 =  cosec2 θ.

1.4.1 Signs of Trigonometric Ratios

Consider four lines OX, OX′, OY, OY′ at right angles to each other (Figure 1.25).

Let a revolving line OP start from OX in the anticlockwise direction. From P draw

PM ⊥ OX or OX′. We have the following convention of signs regarding the sides

of ∆OPM.

1. OM is positive, if it is along OX.

2. OM is negative, if it is along OX′.

3. MP is negative, if it is along OY′.

4. MP is positive, if it is along OY.

5. OP is regarded always positive.

X' X

Y

Y'

PP

M M

MM

O

P

P

Figure 1.25  Signs of Trigonometric Ratios
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First quadrant. If the revolving line OP is in the first quadrant, then all the sides of

the triangle OPM are positive. Therefore, all the trigonometric ratios are positive

in the first quadrant.

Second quadrant. If the revolving line OP is in the second quadrant, then OM is

negative and the other two sides of ∆OPM are positive. Therefore, ratios involving

OM will be negative. So, cosine, secant, tangent, cotangent of an angle in the

second quadrant are negative while sine and cosecant of anlge in the second quadrant

are positive.

Third quadrant. If the revolving line is in the third quadrant, then sides OM and

MP both are negative. Since OP is always positive, therefore, ratios involving

each one of OM and MP alone will be negative. So, sine, cosine, cosecant and

secant of an angle in the third quadrant are negative. Since tangent or cotangent of

any angle involve both OM and MP, therefore, these will be positive. So, tangent

and cotangent of an angle in the third quadrant are positive.

Fourth quadrant. If the revolving line OP is in the fourth quadrant, then MP is

negative and the other two sides of ∆OPM are positive. Therefore, ratios involving

MP will be negative and others positive. So, sine, cosecant, tangent and cotangent

of an angle in the fourth quadrant are negative while cosine and secant of an angle

in the fourth quadrant are positive.

Limits to the Value of Trigonometric Ratios

We know that sin2 θ + cos2 θ = 1 for any angle θ. sin2 θ and cos2 θ being perfect

squares, will be positive. Again neither of them can be greater than 1 because then

the other will have to be negative.

Thus, sin2 θ ≤ 1, cos2 θ ≤ 1.

⇒ sin θ and cos θ cannot be numerically greater than 1.

Similarly, cosec θ =
1

sin θ
 and sec θ = 

1

cos θ
 cannot be numerically less

than 1.

There is no restriction on tan θ and cot θ. They can have any value.

Example 1.30: Prove that sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ.

Solution: Here LHS=sin6 θ + cos6 θ

=(sin2 θ)3 + (cos2 θ)3

=(sin2 θ + cos2 θ)(sin4 θ – sin2 θ cos2 θ + cos4 θ)

=1 . (sin4 θ – sin2 θ cos2 θ + cos4 θ)

=[(sin2 θ + cos2 θ)2 – 3 sin2 θ cos2 θ]

=1 – 3 sin2 θ cos2 θ = RHS.

Example 1.31: Prove that
1 cos

1 cos

+

−

θ

θ
= cosec θ + cot θ. Provided

cos θ ≠ 1.
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Solution: LHS =
1

1

+

−

cos

cos

θ

θ
  =

( cos )( cos )

( cos )( cos )

1 1

1 1

+ +

− +

θ θ

θ θ
 = −

+

−

1

1
2

cos

cos

θ

θ

=
1 + cos

sin

θ

θ
 = 

1

sin

cos

sinθ

θ

θ
+  = cosec θ + cot θ.

Example 1.32: Prove that (1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2.

Solution: LHS = (1 + cot θ – cosec θ)(1 + tan θ + sec θ)

= 1
1

1
1

+ −
F
HG

I
KJ + +
F
HG

I
KJ

cos

sin sin

sin

cos cos

θ

θ θ

θ

θ θ

LHS = 
(sin cos )(cos sin )

sin cos

θ θ θ θ

θ θ

+ − + +1 1

= 
(sin cos )

sin cos

θ θ

θ θ

+ −2
1

= 
sin cos sin cos

sin cos

2 2 2 1θ θ θ θ

θ θ

+ + −

= 
1 2 1+ −sin cos

sin cos

θ θ

θ θ
 = 

2 sin cos

sin cos

θ θ

θ θ
 = 2 = RHS.

Example 1.33: Prove that 
tan θ cot θ

1– cot θ 1– tanθ
+  = 1 + cosec θ sec θ, if

cot θ ≠ 1, 0 and tan θ ≠ 1, 0.

Solution: LHS =
tan

cot

cot

tan

θ

θ

θ

θ1 1−
+

−

=
tan

tan

tan

tan

θ

θ

θ

θ
1

1

1

1
−

+
−

=
tan

tan tan ( tan )

2

1

1

1

θ

θ θ θ−
+

−

=
tan

tan tan (tan )

2

1

1

1

θ

θ θ θ−
−

−

=
tan

tan (tan )

3
1

1

θ

θ θ

−

−

=
(tan )(tan tan )

tan (tan )

θ θ θ

θ θ

− + +

−

1 1

1

2

=
tan tan

tan

2
1θ θ

θ

+ +
 since tan θ ≠ 1

=
sec tan

tan

2 θ θ

θ

+

=
sec

tan

2

1
θ

θ
+  = sec θ cosec θ + 1 = RHS.



Trigonometry

NOTES

Self-Instructional Material 39

Example 1.34: Which of the six trigonometrical ratios are positive for (i)

960º (ii) – 560º?

Solution: (i) 960º = 720º + 240º.

Therefore, the revolving line starting from OX will make two complete

revolutions in the anticlockwise direction and further trace out an angle of 240º in

the same direction. Thus, it will be in the third quadrant. So, the tangent and

cotangent are positive and rest of trigonometrical ratios will be negative.

(ii) – 560º = – 360º – 200º.

Therefore, the revolving line after making one complete revolution in the

clockwise direciton, will trace out further an angle of 200º in the same direction.

Thus, it will be in the second quadrant. So, only sine and cosecant are positive.

Example 1.35: In what quadrants can θ lie if sec θ = 
7

6

−
?

Solution: As sec θ is negative in second and third quadrants, θ can lie in

second or third quadrant only.

Example 1.36: If sin θ =
12

13

−
, determine other trigonometrical ratios

of  θ.

Solution: cos2 θ = 1 – sin2 θ

= 1
144

169
−  = 

169 144

169

−
 = 

25

169

⇒ cos θ = ±
5

13

So tan θ =
sin

cos

θ

θ
 = ∓

12

5

cosec θ =
−13

12
, sec θ = ±

13

5
, cot θ = ∓

5

12
.

Example 1.37: Express all the trigonometrical ratios of θ in terms of the sin θ.

Solution: Let sin θ = k.
Then, cos2 θ = 1 – sin2 θ = 1 – k2

⇒ cos θ = ± −1 2
k  21 sin θ± −

tan θ =
sin

cos

θ

θ
 = ±

−

k

k1 2
 = ±

2

sin θ

1– sin θ

cot θ =
cos

sin

θ

θ
 = ±

−1
2

k

k
 = ±

21 sin θ

sinθ

−

sec θ =
1

cos θ
 = ±

−

1

1 2
k

 = ± 
2

1

1 sin θ−

cosec θ =
1

sinθ
 = 

1

k
 = 

1

sin θ
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Example 1.38: Prove that sin θ = a
1

a
+  is impossible, if a is real.

Solution: sin θ = a
a

+
1

⇒ sin θ = 
a

a

2 1+

⇒ a
2 – a sin θ + 1 = 0

⇒ a = 
sin sinθ θ± −2 4

2
For a to be real, the expression under the radical sign, must be positive or

zero.

i.e., sin2 θ – 4 ≥ 0

or sin2 θ ≥ 4 ⇒ sin θ is numerically greater than or

equal to 2 which is impossible.

Thus, if a is real, sin θ = a
a

+
1

 is impossible.

Example 1.39: Prove that:

1 1 1 1

cosec θ cot θ sin θ sin θ cosec θ – cot θ
− = −

+

Solution: LHS =
1 1

cosec θ θ θ+
−

cot sin

=
sin

cos sin

θ

θ θ1

1

+
−

=
sin ( cos )

( cos ) sin

2 1

1

θ θ

θ θ

− +

+

=
− − −

+

( sin ) cos

( cos ) sin

1

1

2 θ θ

θ θ

=
− −

+

cos cos

( cos ) sin

2

1

θ θ

θ θ

=
− +

+

cos ( cos )

( cos ) sin

θ θ

θ θ

1

1
 = – cot θ

RHS =
1 1

sin cotθ θ θ
−

−cosec

=
1

1sin

sin

cosθ

θ

θ
−

−

=
1

1

2− −

−

cos sin

sin ( cos )

θ θ

θ θ

=
2

cos cos

sin (1 cos )

θ − θ

θ − θ

=
− −

−

cos ( cos )

sin ( cos )

θ θ

θ θ

1

1
 = – cot θ

Therefore, LHS = RHS.



Trigonometry

NOTES

Self-Instructional Material 41

Example 1.40: Prove that:

sin θ(1 + tan θ) + cos θ (1 + cot θ) = sec θ + cosec θ.

Solution: LHS = sin θ (1 + tan θ) + cos θ (1 + cot θ)

= sin
sin

cos
cos

cos

sin
θ

θ

θ
θ

θ

θ
1 1+
F
HG

I
KJ + +

F
HG

I
KJ

= sin
sin

cos
cos

cos

sin
θ

θ

θ
θ

θ

θ
+ + +

2 2

=
2 3 2 3

sin cos sin cos sin cos

sin cos

θ θ + θ + θ θ + θ

θ θ

=
sin (sin cos ) cos (sin cos )

sin cos

2 2θ θ θ θ θ θ

θ θ

+ + +

=
(sin cos ) (sin cos )

sin cos

2 2θ θ θ θ

θ θ

+ +

=
sin cos

sin cos

θ θ

θ θ

+

=
1 1

cos sinθ θ
+  = sec θ + cosec θ = RHS.

Example 1.41: State giving the reason whether the following equation is

possible:

2 sin
2 θ – 3 cos θ – 6 = 0

Solution: 2 sin2 θ – 3 cos θ – 6 = 0

⇒ 2(1 – cos2 θ) – 3 cos θ – 6 = 0

⇒ – 2 cos2 θ – 3 cos θ – 4 = 0

⇒ 2 cos2 θ + 3 cos θ + 4 = 0

⇒ cos θ = 
− ± −3 9 32

4
 = 

− ± −3 23

4
⇒ cos θ is imaginary, hence this equation is not possible

Example 1.42: Prove that:

1 sin θ 1 sin θ

1 secθ 1 secθ

− +
−

+ −
 = 2 cos θ (cot θ + cosec2 θ)

Solution: LHS =
( sin ) cos

cos

( sin ) cos

cos

1

1

1

1

−

+
−

+

−

θ θ

θ

θ θ

θ

= cos
( sin )

( cos )

( sin )

( cos )
θ

θ

θ

θ

θ

1

1

1

1

−

+
+

+

−

L
NM

O
QP
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= 2

(1 sin ) (1 cos )

(1 sin ) (1 cos )
cos

1 cos

 − θ − θ
 + + θ + θ θ
 − θ
 
 

= cos

sin cos sin cos
sin cos sin cos

sin
θ

θ θ θ θ
θ θ θ θ

θ

1
1

2

− − +
+ + + +
L

N

MMMM

O

Q

PPPP

= cos
sin cos

sin
θ

θ θ

θ

2 2
2

+L
N
MM

O
Q
PP

= 2 cos θ [cosec2 θ + cot θ] = RHS.

Example 1.43: If tan x = 
sin cos

sin cos

θ − θ

θ + θ
 where θ and x are both positive and acute

angles, prove that:

sin x =
1

(sinθ – cosθ)
2

Solution: Since tan x = 
sin θ cosθ

sin θ cosθ

−

+
 1 + tan2

x =1
2

2

2 2

2 2
+

+ −

+ +

sin cos sin cos

sin cos sin cos

θ θ θ θ

θ θ θ θ

=
(1 2 sin cos )

1
(1 2 sin cos )

− θ θ
+

+ θ θ
 = 

2

1 2+ sin cosθ θ

Therefore, sec2
x =

2

1 2+ sin cosθ θ

⇒ cos2
x =

1 2

2

+ sin cosθ θ

⇒ 1 – cos2
x =

2 (1 2 sin cos )

2

− + θ θ

=
1 2

2

− sin cosθ θ
 = 

(sin cos )θ θ− 2

2

⇒ sin2
x =

2(sin cos )

2

θ − θ

⇒ sin x = ±
−(sin cos )θ θ

2
.

Since θ is acute and tan x ≥ 0, sin θ ≥ cos θ

⇒ sin θ – cos θ ≥ 0

Also x is acute ⇒ sin x ≥ 0

⇒ sin x = +
−(sin cos )θ θ

2
.
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Example 1.44: Express

(sin θ – 3) (sin θ – 1)(sin θ + 1)(sin θ + 3) + 16

as a perfect square and examine if there is any suitable value of θ for which the

above expression can be removed.

Solution: Now, (sin θ – 3)(sin θ – 1)(sin θ + 1)(sin θ + 3) + 16

= (sin2 θ – 1)(sin2 θ – 9) + 16

= sin4 θ – 10 sin2 θ + 25

= (sin2 θ – 5)2.

This is 0 only when sin2 θ – 5 = 0, i.e., only when sin2 θ = 5

Which is not possible as the maximum value of sin2 θ is 1.

Thus, there is no value of θ for which the given expression can vanish.

Example 1.45: Show that:

tan θ tan θ
+

sec θ – 1 sec θ + 1
 = 2 cosec θ.

Solution: LHS= 
tan

sec

tan

sec

θ

θ

θ

θ−
+

+1 1

= tan
sec sec

θ
θ θ

1

1

1

1−
+

+

L
NM

O
QP

= tan
sec

sec
θ

θ

θ

2

12 −

L
N
MM

O
Q
PP

= tan
sec

tan
θ

θ

θ

2
2

L
N
MM

O
Q
PP

=
2 sec

tan

θ

θ
 = 

2

sin θ
 = 2 cosec θ = RHS.

CHECK YOUR PROGRESS

7. Determine the quadrant in which θ must lie if cot θ is positive and cosec θ
is negative.

8. If tan θ = 
4

5
, find the value of,

2sin θ+3cosθ

4cosθ+3sin θ

9. Find the value in terms of p and q of,

p cos θ + sin θ

p cos θ – sin θ

q

q
 where cot θ = 

p

q
.
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1.5 TRIGONOMETRIC RATIOS OF ANGLES

1.5.1 Standard Angles

Angles of 45°, 60°, 30°

Angle of 45º. Let the revolving line OR starting from OX trace out an angle of 45º

(see Figure 1.26) in the anticlockwise direction. Take any point P on OR. From P

draw PM ⊥ OX.

Then in ∆OMP,

∠MOP = 45º,

∠OMP = 90º

⇒ ∠OPM = 45º.

Then, OM = MP = a (say)

Also, (OP)2 = (OM)2 + (MP)2

= a2 + a2 = 2a
2

⇒ OP = 2a

45

O M X

P

R

Figure 1.26  45° Angle

Now, sin 45º =
MP

OP
 = 

a

a2
 = 

1

2

cos 45º =
OM

OP
 = 

a

a2
 = 

1

2

tan 45º =
MP

OM
 = 

a

a
 = 1

cot 45º =
1

45tan º
 = 1

cosec 45º =
1

45sin º
 = 2

sec 45º =
1

45cos º
 = 2

Angle of 60º. Let the revolving line OR starting from OX trace out an angle of

60º in the anticlockwise direction (see Figure 1.27). Take any point  P on OR.

From P draw PM ⊥ OX. Take a point M′ on OX such that MM′ = OM = a (say)

Then ∠MOP = 60º,

∠OPM = 30º.

The two ∆s OMP and MM′P are congruent.
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So, OP = M ′P

and  ∠MOP = ∠OM′P.

So that ∆OM′P is an equilateral triangle.

Then OP = 2OM = 2a

60

O M
X

P

R

M'

Figure 1.27  60° Angle

and (MP)2 = (OP)2 – (OM)2 = 4a
2 – a2 = 3a

2

MP = 3a

Hence, sin 60° = 
3 3

2 2

MP a

OP a
= =

cos 60° =
1

.
2 2

OM a

OP a
= =

tan 60° = 3
MP

OP
=

cot 60° = 
1

3
, cosec 60° = 

2

3
, sec 60° = 2

Angle of 30°. Let the revolving line trace out an angle XOR = 30° in the

anticlockwise direction (see Figure 1.28). Take any point P on OR. From P draw

PM ⊥ OX. Produce PM to P′ making MP′ = PM.

Then ∠MOP = 30°,

      ∠OPM = 60°.

30
O X

P

M

R

P'

Figure  1.28 Congruent Triangles When Two Sides are Equal

The two ∆s OPM and OP′M are congruent as two sides are equal and the
included angles are equal.

Then ∠OPM = ∠OP′M = 60°

so that ∆OPP′ is equilateral.

Let MP = MP′ = a (say)

Then, OP = 2a and OM = 3a
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Hence, sin 30º =
MP

OP
 = 

a

a2
 = 

1

2

cos 30º =
OM

OP
 = 

3

2

a

a
 = 

3

2

tan 30º =
MP

OM
 = 

a

a3
 = 

1

3

cot 30º = 3 , sec 30º = 
2

3
, cosec 30º = 2

What is Infinity?

Consider the fraction a/n, where a is a fixed positie number and n is any positive

number. As we give smaller values to n, the fraction  a/n becomes larger and larger,

and so a/n can be made as large as we like by giving sufficiently small values to n.

This fact is expressed by saying ‘a/n approaches infinity as n approaches zero’ and

is written in symbols as,

0
Lim
n

a

n→
= ∞

If a is a negative quantity then, as n approaches zero, a/n is said to approach

– ∞.

Angle of 0º. Let the revolving line OR starting from OX in the anticlockwise

direction trace out a very small angle XOR = θ. Take any point P on OR. Let PM

⊥ OX (see Figure 1.29).

q

O X

P

M

R

A

Figure 1.29  0° Angle

Draw an Arc of circle with centre O and radius OP, cutting OX at A. Then as

θ tends to zero, OM tends to OA and MP tends to zero.

Then, sin 0º =
θ 0º
Lim sin θ

→
 = 

θ 0º

MP
Lim

OP→
 = 

0

OA
 = 0.

cos 0º =
θ 0º
Limcos θ

→
 = 

θ 0º

OM
Lim

OP→
 = 

OA

OA
 = 1.

tan 0º =
θ 0º
Lim tan θ

→
 = 

θ 0º
Lim

MP

OM→
 = 

0

OA
 = 0.

cot 0º =
θ 0º
Lim cot θ

→
 = 

θ 0º
Lim

OM

MP→
 = ∞.

sec 0º =
θ 0º
Limsec θ

→
 = 

θ 0º
Lim

OP

OM→
 = 

OA

OA
 = 1.

cosec 0º =
θ 0º
Limcosec θ

→
 = 

θ 0º
Lim

OP

MP→
 = ∞.
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Angle of 90º. Let the revolving line OR starting from OX trace out an angle θ in

the anticlockwise direction, very nearly equal to 90º. Take any point P on OR

(see Figure 1.30).

Let PM ⊥ OX and OY ⊥ OX. With O as centre and OP as radius, draw an Arc

of a circle cutting OY at B and OX at A.

Then as θ tends to 90º, OP approaches OB, PM approaches OB and OM

tends to zero.

q
O X

M

R

A

P

B

Y

Figure 1.30   90° Angle

Then, sin 90º =
θ 90º
Lim sin θ
→

 = 
θ 90º
Lim

MP

OP→
 = 

OB

OB
 = 1.

cos 90º =
θ 90º
Lim cos θ
→

 = 
θ 90º
Lim

OM

OP→
 = 

0

OB
 = 0.

tan 90º =
θ 90º
Lim tan θ
→

 = 
θ 90º
Lim

MP

OM→
 = ∞.

cot 90º =
θ 90º
Lim cot θ
→

 = 
θ 90º
Lim

OM

MP→
 = 

0

OB
 = 0.

sec 90º =
θ 90º
Lim sec θ
→

 = 
θ 90º
Lim

OP

OM→
 = ∞.

cosec 90º =
θ 90º
Lim cosec θ
→

 = 
90º

Lim
OP

MPθ →
 = 

OB

OB
 = 1.

The results of this section have been summarized in Table 1.1. You are advised

to make yourself familiar with it.

Table 1.1  Standard Angles and their Corresponding Values

Angle 0º 30º 45º 60º 90º

sine 0
1

2

1

2

3

2
1

cosine 1
3

2

1

2

1

2
0

tangent 0 1 1 3 ∞

cotangent ∞ 3 1
1

3
0

cosecant ∞ 2 2
2

3
1

secant 1
2

3
2 2 ∞
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Example 1.46: Find the value of cot 60º tan 30º + sec2 45º.

Solution: cot 60º tan 30º + sec2 45º = 
1

3

1

3
2+  = 

1

3
2+  = 

7

3

Example 1.47: Find x, if tan2 45º – cos2 60º = x sin 45º cos 45º tan 60º.

Solution: LHS = 1
1

4
−  = 

3

4

RHS = x
1

2

1

2
3  = 

3

2

x

Then
3

4
=

3

2

x
⇒ x = 

3

2

Example 1.48: If θ = 30º, verify that:

(i) sin 3θ = 3 sin θ – 4 sin3 θ

(ii) cos 3θ = 4 cos3 θ – 3 cos θ.

Solution: (i) sin 3θ = sin 90º = 1

and 3 sin θ – 4 sin3 θ = 3 sin 30º – 4 sin3 30º

=
3

2

4

8
−  = 

3

2

1

2
−  = 1.

This proves that sin 3θ = 3 sin θ – 4 sin3 θ

(ii) when θ = 30°, cos 3θ = cos 90º = 0

and 4 cos3 θ – 3 cos θ = 4 cos3 30° – 3 cos 30º

= 4
3 3

8
3

3

2
−  = 0.

Example 1.49: Find a solution of the following equation:

cot θ + tan θ = 2 cosec θ.

Solution: cot θ + tan θ = 
1

tan
tan

θ
θ+  = 

1
2+ tan

tan

θ

θ
 = 

sec

tan

2 θ

θ
.

Then,
sec

tan

2 θ

θ
= 2 cosec θ

⇒ sec2 θ = 2 cosec θ tan θ = 2 sec θ

⇒ sec θ (sec θ – 2) = 0

⇒ sec θ = 0 or 2.

As sec θ = 0 is impossible.

we get sec θ = 2 ⇒ one value of θ = π/3.

Thus, a solution of given equation is θ = π/3.

Example 1.50: Prove that cot 30º, cot 45º, and cot 60º are in G.P.

Solution: Now, cot 30º = 3  = a (say)

cot 45º = 1 = b (say)

cot 60º =
1

3
 = c (say)

Then, b2 = 1 = ac.
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Thus, a, b, c are in G.P.

i.e., cot 30º, cot 45º and cot 60º are in G.P.

Example 1.51: Find the value of θ from the following equation:

2
cot θ – (1 + 3) cotθ + 3  = 0, for 0 < θ < 

π

2
.

Solution:  Now, cot θ = 
( )1 3 1 3 2 3 4 3

2

+ ± + + −

     = 
( ) ( )1 3 1 3

2

+ ± −
 = 1, 3

cot θ = 1 ⇒ θ = 
π

4

cot θ = 3 ⇒ θ = 
π

3

Therefore, there are two values of θ, namely 
π

4
 and 

π

3
 which satisfy the given

equation.

Example 1.52: ABC is a right-angled triangle in which the angle C is a right

angle and BC = 
1

2
 AB. The line AD bisecting the angle A meets BC at D. Obtain

the value of tan 15º from Figure 1.31.

Solution: Let AB = 2x.

Then, BC = x.

Let ∠CAB = 2θ

A C

D

B

Figure 1.31

Then, sin 2θ = 
BC

AB
 = 

1

2

⇒ 2θ = 30º ⇒ θ = 15º.

Now,  
AC

AB
 = 

CD

BD

and AC = 4 2 2
x x−  = 3x

⇒
3

2

x

x
=

CD

BD

⇒ CD =
3

2
BD
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Now, BD + CD = x

⇒
2

3
CD CD+ = x

⇒ CD =
x 3

2 3( )+

Now, from ∆ACD

tan 15º =
CD

AC

=
x

x

3

2 3

1

3( )+
⋅  = 

1

2 3+
 = 3 2−

1.5.2 Trigonometric Ratios of Allied Angles

The figures in this section are drawn so that the revolving line lies in the first quadrant.

The figures when revolving line lies in second, third or fourth quadrant can be

similarly drawn. The same proofs hold good in other cases too.

Angle (– θθθθ): Let the revolving line OR starting from OX, move in anticlockwise

direction and trace out an angle XOR = θ. Let another revolving line OR′ starting

from OX, move in clockwise direction and trace out an angle XOR′ = – θ
(see Figure 1.32).

Take a point P on OR.

Draw PM ⊥ OX and produce it to meet OR′ at P′.

∆s OPM and OP′M are congruent.

By convention of signs,

MP = – MP′

OP = OP′

O
M

X

P

P'

R

R'

q

q

Figure 1.32  Allied Angles θ

So, sin (– θ) = 
MP

OP

′

′
= 

− MP

OP

 =  – sin θ

cos (– θ) =
OM

OP′
= 

OM

OP
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= cos θ.

tan (– θ) =
MP

OM

′
= 

− MP

OM

= – tan θ.

cot (– θ) =
OM

MP′
 = 

− OM

MP
 = – cot θ.

sec (–θ) = sec .
OP OP

OM OM

′
= = θ

cosec (– θ) =
OP

MP

′

′
 = 

− OP

MP
 = – cosec θ.

Thus, when θ is changed to – θ, cos θ and sec θ remain unaltered both in

magnitude and sign. All other trigonometrical ratios remain unaltered in magnitude

but the sign is changed.

Angle (90 – θθθθ): Let a revolving line OR starting from OX, move in anticlockwise

direction and trace an angle XOR = θ (see Figure 1.33).

q

q

P'

R'

P

R

X
M' M

X'

Y'

Y

O

Figure 1.33  Angle 90 – θ

Let OR′ be another revolving line starting from OX in anticlockwise direction,

trace out an angle of 90º and then revolve back through angle θ. Thus, OR′ has

traced an angle

XOR′ = 90 – θ.

Take P and P′ on OR and OR′ respectively such that OP = OP′. From P and

P′ draw PM ⊥ OX and P′M′ ⊥ OX.

Then, ∆s OPM and P′OM′ are congruent.

Thus, we haveOM′ = MP

OM = M′P′.

Then, from ∆OM′P′

sin (90 – θ) =
M P

OP

′ ′

′
 = 

OM

OP
 = cos θ.

cos (90 – θ) =
OM

OP

′

′
 = 

MP

OP
 = sin θ.

tan (90 – θ) =
M P

OM

′ ′

′
 = 

OM

MP
 = cot θ.
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cot (90 – θ) = tan .
OM MP

M P OM

′
= = θ

′ ′

sec (90 – θ) =
OP

OM

′

′
 = 

OP

MP
 = cosec θ.

cosec (90 – θ) =
OP

M P

′

′ ′
 = 

OP

OM
 = sec θ.

Angle (90 + θθθθ): Let a revolving line OR starting from OX in anticlockwise direction,

trace out an angle XOR = θ. Let another revolving line OR′ starting from OX in

anticlockwise direction, first trace out an angle of 90º and then revolve further

through an angle θ (see Figure 1.34).

q

q

P'

R'

P

R

X
M' M

X'

Y'

Y

O

Figure 1.34  Angle 90 + θ

Take P and P′ on OR and OR′ respectively such that OP′ = OP.

Then, OR′ has traced an angle, XOR′ = 90º + θ.

Draw PM ⊥ OX and P′M′ ⊥ OX′.

∆s OPM and P′OM′ are congruent.

We have, OM = M′P′ – OM′ = MP by convention of signs,

Then, sin (90 + θ) =
M P

OP

′ ′
 = 

OM

OP
 = cos θ.

cos (90 + θ) =
OM

OP

′

′
 = 

− MP

OP
 = – sin θ.

tan (90 + θ) = 
M P

OM

′ ′

′
 = 

OM

MP−
 = – cot θ.

cot (90 + θ) = 
OM

M P

′

′ ′
 = tan .

MP

OM

−
= − θ

sec (90 + θ) = 
OP

OM

′

′
 = 

OP

MP−
 = – cosec θ.

cosec (90 + θ) = 
OP

M P

′

′ ′
 = 

OP

OM
 = sec θ.

Angle (180 – θθθθ): Let a revolving line OR starting from OX in anticlockwise

direction, trace out an angle XOR = θ (see Figure 1.35). Let another revolving

OR′ starting from OX in anticlockwise direction trace out an angle of 180º and

then revolve back through an angle θ. Thus, OR′ has traced an angle,
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XOR′ = 180 – θ.

q q

O M
XX'

Y'

Y

R' R

P

M'

P'

Figure 1.35  Angle 180 – θ

Take P and P′ on OR and OR′ respectively such that OP = OP′.

Draw PM ⊥ OX, P′M′ ⊥ OX′.

∆s OPM and OP′M′ are congruent.

When have OM′ = –OM  by convention of signs.

M′P′ = MP

Then from ∆OM′P′,

sin (180 – θ) =
M P

OP

′ ′

′
 = 

MP

OP
 = sin θ.

cos (180 – θ) =
OM

OP

′

′
 = 

− OM

OP
 = – cos θ.

tan (180 – θ) =
M P

OM

′ ′

′
 = 

MP

OM−
 = – tan θ.

cot (180 – θ) =
OM

M P

′

′ ′
 = 

− OM

MP
 = – cot θ.

sec (180 – θ) =
OP

OM

′

′
 = 

OP

OM−
 = – sec θ.

cosec (180 – θ) =
OP

M O

′

′ ′
 = 

OP

MP
 = cosec θ.

Angle (180 + θθθθ): Let a revolving line OR starting from OX in anticlockwise direction

trace an angle XOR = θ (see Figure 1.36). Let another revolving line starting from

OX in anticlockwise direction first trace out an angle of 180º and revolve further

through an angle θ in the same direction. Take P and P′ on OR and OR′ respectively

such that OP = OP′.

Let,

PM ⊥ OX, P′M′ ⊥ OX′.

∆s OPM and OP′M′ are congruent.
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q

qOM'

M
XX'

Y'

Y

R'

R

P

P'

Figure 1.36  Angle 180 + θ

Since, OP′ = OP

We have, OM = – OM′

MP = – M′P′ by convention of signs.

Then, sin (180 + θ) =
M P

OP

′ ′

′
 = 

− MP

OP
 = – sin θ.

cos (180 + θ) =
OM

OP

′

′
 = 

− OM

OP
 = – cos θ.

tan (180 + θ) =
M P

OM

′ ′

′
 = 

−

−

MP

OM
 = 

MP

OM
 = tan θ.

cot (180 + θ) =
OM

M P

′

′ ′
 = 

−

−

OM

MP
 = 

OM

MP
 = cot θ.

sec (180 + θ) =
OP

OM

′

′
 = 

OP

OM−
 = – sec θ.

cosec (180 + θ) =
OP

MP

′

′
 = 

OP

MP−
 = – cosec θ.

Angle (360 – θθθθ): As before let ∠XOR = θ. Let another revolving line OR′ starting

from OX in anticlockwise direction, first trace out an angle of 360º and then,

revolve back through an angle θ (see Figure 1.37). Thus, OR′ has turned through

an angle XOR′ = 360 – θ. Take P and P′ on OR and OR′ respectively such that

OP = OP′.

X'
M

X

P

P'

R

R'

q

q M'

Y'

Y

O

Figure 1.37   Angle 360 – θ
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Let PM ⊥ OX, P′M′ ⊥ OX.

∆s OPM, OP′M ′ are congruent.

Now, OP′ = OP

We have, OM = OM′

M′P′ = – MP, by convention of signs. [M and M′ coincide]

Then, sin (360 – θ) =
M P

OP

′ ′

′
 = 

− MP

OP
 = – sin θ.

cos (360 – θ) =
OM

OP

′

′
 = 

− OM

OP
 = cos θ.

tan (360 – θ) =
M P

OM

′ ′

′
 = 

− MP

OM
 = – tan θ.

cot (360 – θ) =
OM

M P

′

′ ′
 = 

OM

MP−
= – cot θ.

cosec (360 – θ) =
OP

M P

′

′ ′
 = 

OP

MP−
 = – cosec θ.

sec (360 – θ) =
OP

OM

′

′
 = 

OP

OM
 = sec θ.

Angle (360° + θθθθ): Let a revolving line OR starting from OX in anticlockwise

direction, trace out an angle XOR = θ (Figure 1.38). Let another revolving line

OR′ starting from OX in the same direction as OP first trace out an angle of 360º

and further revolve through an angle θ. Thus OR′ has traced an angle

XOR′ = 360º + θ.

q

O M
XX'

Y'

Y

R R( )′

P

Figure 1.38  Angle 360 + θ

Here, OR′ coincides with OR.

Thus, trigonometrical ratios of 360 + θ are same as those of θ.

Note: It can be easily seen that trigonometrical ratios of (n × 360 ± θ) are

same as those of 360 ± θ, where n is any integer.

Example 1.53: Find the values of (i) tan (– 945º) (ii) sec (225º).

Solution: (i) tan (– 945º)  = – tan 945º

= – tan (3 × 360 – 135º)

= – tan (360º – 135º)

= – [– tan 135º] = tan 135º

=  tan (90º + 45º) = – cot 45º = – 1.
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(ii) sec 225º = sec (180º + 45º) = – sec 45º = − 2 .

Example 1.54: If cos θ = a, find the values of cosec
2

π 
+ θ 

 
 and 

3
sin

2

π 
− θ 

 
.

Solution: Now, cosec 
π

θ
2

+
F
HG
I
KJ = sec θ = 

1

cos θ
 = 

1

a

and sin
3

2

π
θ−

F
HG

I
KJ = sin π

π
θ+ −

F
HG

I
KJ2

= − −
F
HG
I
KJsin

π
θ

2
 = – cos θ = – a.

Example 1.55: Find the trigonometrical ratios of 270º – θ in terms of those of

θ for all vlaues of θ.

Solution: sin (270º – θ) = sin sin º º180 90+ − θe j
= – sin (90° – θ) = – cos θ.

cos (270º – θ) = cos º º180 90+ − θe j
= – cos (90º – θ) = – sin θ.

tan (270º – θ) = tan º º180 90+ − θe j
= tan (90º – θ) = cot θ.

cot (270º – θ) = cot º º180 90+ − θe j
= cot (90º – θ) = tan θ.

sec (270º – θ) = sec º º180 90+ − θe j
= – sec (90º – θ) = – cosec θ.

cosec (270º – θ) = cosec 180 90º º+ − θe j
= – cosec (90º – θ) = – sec θ.

Example 1.56: What value of x between 0º and 90º will satisfy the equation

tan 2x tan 4x = 1?

Solution:  tan 2x tan 4x = 1

⇒ tan 2x =
1

4tan x
 = cot 4x

⇒ tan 2x = tan
π

2
4−

F
HG

I
KJx

⇒ 2x =
π

2
4− x , or 2x = π

π
+ −
F
HG

I
KJ2

4x ,

or 2x = 2
2

4π
π

+ −
F
HG

I
KJx

⇒ x =15º, 45º, 75º.
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Example 1.57: Find the value of tan 5º tan 25º tan 45º tan 65º tan 85º.

Solution: Now, tan 85º = tan (90º – 5º) = cot 5º

and tan 65º = tan (90º – 25º) = cot 25º

So, tan 5º tan 25º tan 45º tan 65º tan 85º

= (tan 5º cot 5º)(tan 25º cot 25º) tan 45º

= tan 45º = 1.

Example 1.58: Show that:

3 3

2

sin (270º + θ) cos (720º – θ) – sin (270º – θ) sin (540º + θ)

sin (90º + θ) sin (– θ)– cos (280º – θ) 2

cot (270º – θ)
+

cosec (450º + θ)
 = 1.

where θ is taken such as the denominator appearing in any fraction in the

expression does not vanish.

Solution: Now, cos3 (720º – θ) = cos3 θ

sin3 (540º + θ) = – sin3 θ

cosec2 (450º + θ) = sec2 θ

sin (270º + θ) = – cos θ

sin (270º – θ) = – cos θ

cot (270º – θ) = tan θ

So, the given expression is equal to,

= 

3 3

2 2

cos cos sin cos tan

cos sin cos sec

− θ θ − θ θ θ
+

− θ θ − θ θ

= 
− +

− +
+

cos (sin cos )

cos (sin cos )

sin cosθ θ θ

θ θ θ

θ θ3 3

1

= 
− + + −

− +
+

(sin cos )(sin cos sin cos )

(sin cos )

sin cosθ θ θ θ θ θ

θ θ

θ θ2 2

1

= 1 – sin θ cos θ + sin θ cos θ = 1.

Example 1.59: If θ is the angle in the fourth quadrant satisfying the equation

cot2 θ = 4, find the vlaue of 
1

5
 (sec θ – cosec θ).

Solution: cot2 θ = cosec2 θ – 1

⇒ 4 = cosec2 θ – 1

⇒ cosec2 θ = 5

⇒ cosec θ = − 5  (as θ lies in fourth quadrant)

Also cot2 θ = 4 ⇒ tan2 θ = 
1

4

So, tan2 θ = sec2 θ – 1

⇒
1

4
= sec2 θ – 1 ⇒ sec2 θ = 

5

4

⇒ sec θ = 
5

2



58   Self-Instructional Material

Trigonometry

NOTES

Therefore, 
1

5
(sec )θ θ− cosec  = 

1

5

5

2
5+

F
HG

I
KJ  = 

3

2
.

CHECK YOUR PROGRESS

10. If θ is an acute angle, find its value from tan θ = 2 sin θ.

11. If A, B, C are angles of a triangle, prove that:

cot (A + B) + cot C = 0.

12. In any triangle ABC, 2 sin A + 3  sin B = 
5

2
 and 3  sin A + 2 sin B

= 
3 3

2
. Find the angle C.

13. Given that θ is an angle between 180º and 270º. Find the value of θ if it

satisfies the equation 3 cos2 θ – sin2 θ = 1.

1.6 INVERSE TRIGONOMETRIC FUNCTIONS

The inverse sine function is written as:

y = sin– 1
x,   which implies that x = sin y,  − ≤ ≤

1

2

1

2
π πy

Note: sin– 1
x ≠ (sin x)– 1

(sin x)– 1 =
1

sin x
 and sin (sin– 1

x) = x

cos (cos– 1
x) = x, cos– 1(cos x) = x

sin− F
HG
I
KJ

1 1

2
 = 

π

4
 since sin

π

4
 = 

1

2

sin− −
F
HG
I
KJ

1 1

2
= −

π

4
 since sin −

F
HG
I
KJ

π

4
 = − sin

π

4
 = −

1

2

Other trigonometric inverse functions are cos– 1
x, tan– 1

x, sec– 1
x, cosec– 1

x,

cot– 1
x.

                 cos− F
HG
I
KJ

1 1

2
 = 

π

4
, since cos

π

4
 = 

1

2
.

Example 1.60: Prove cos– 1
x = 

1

2

1π − −sin x  for |x| ≤ 1.

Solution: Let cos– 1
x =  y      ∴ cos y = x or sin

π

2
−
F
HG
I
KJy  = x

∴   sin– 1
x =

π

2
− y  = 

π

2

1− −cos x .  ⇒ cos–1 x = 
2

π
 – sin–1 

x  Hence proved.
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Example 1.61: Plot the graphs of y = sin– 1
x, cos– 1

x, tan– 1
x.

Solution: Graphs of Inverse Functions are as follows (see Figure 1.39):

If x = 0, sin– 1
x = sin– 1 0 = 0, cos– 1 0 = π/2.

If x = 
1

2
, sin– 1 1/2 = π/6, cos– 1 1/2 = π/3.

If x = – 1/2 sin– 1 (– 1/2) = – π/6, cos– 1 (– 1/2) = π/3.

If x = 1 sin– 1 1 = π/2, cos– 1 1 = 0.

If x = – 1, sin– 1 (– 1) = – π/2, cos– 1 (– 1) = π.

1/4 1/2 3/4 1–1/2–3/4–1
– /6π

– /3π

– /2π

π/6

π/3

π/2

X

y x = sin  –1

Y

Y

–1 O 1
X

π/2

y x = cos  –1

Y

π/2

O
X

– /2π

y x = tan  –1

Figure 1.39  Graphs of Inverse Functions
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1.6.1 Range of Trigonometric Functions

y = sin x

The range of y = sin x is – 1 ≤ y ≤ 1. The function increases strictly from – 1 to + 1

as x increases from – π/2 to π/2 and decreases strictly from + 1 to – 1 as x

increases from π/2 to 3π/2 and so on (see Figure 1.40).

+ 1 + 1

– 1– 1

(– 2 , 0)π (– , 0)π O ( , 0)π ( 2 , 0)π

X

Figure 1.40  Range of Trigonometric Functions

The range of y = cos x is – 1 ≤ y ≤ 1

– 3 /2π

– π
 – /2π O

π/2 π  3 /2π
X

– 1 – 1

Figure 1.41  Range of y = tan x

The range of y = tan x is – ∞ ≤ y ≤ ∞ (see Figure 1.41).

The range of y = tan– 1
x is −

π

2
 ≤ y ≤ 

π

2
 (see Figure 1.42).

– 2π – π  2πO  π

Figure 1.42  Range of y = tan–1

The functions sec x, cosec x and cot x can be examined on the same lines.

Note: (i) |sin x| < |x| when x lies in −
F
HG

I
KJ

π π

2 2
, . (ii) sin x < x < tan x.
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1.6.2 Properties of Inverse Trigonometric Functions

I. If  sin– 1 x = y, sin y = x

∴ sin– 1 (sin y) = y, cos– 1 (cos y) = y

Also, sin (sin– 1
y) = y, cos (cos– 1

y) = y

II. Reciprocity 
–1 1

sin
x

 = cosec– 1 x

-1 1 1 1
Since sin  =  implies sin  =   or  = 

sin
y y x

x x y

 
 
 

∴ x = cosec y or y = cosec– 1
x

Similarly, cos−1 1

x
= sec– 1

x,                sec−1 1

x
 = cos– 1

x

tan−1 1

x
= cot– 1

x, cot−1 1

x
 = tan– 1

x          ...(1.20)

III. Inverse functions are odd functions

sin– 1 (– x) = – sin– 1
x

[sin– 1 (– x) = y implies – x = sin y or x = – sin y]

tan– 1 (– x) = – tan– 1
x

cosec– 1 (– x) = – cosec– 1
x

IV. Other properties

sin– 1 (– x) = – sin– 1
x – 1 ≤ x ≤ 1

cosec– 1 (– x) = – cosec– 1
x – 1 ≥ x, x ≥ 1

cos– 1 (– x) = π – cos– 1
x – 1 ≤ x ≤ 1

sec– 1 (– x) = π – sec– 1
x – 1 ≥ x, x ≥ 1

tan– 1 (– x) = – tan– 1
x – ∞ < x < ∞

cot– 1 (– x) = π – cot– 1
x – ∞ < x < ∞ ...(1.21)

sin– 1
x + cos– 1

x =
π

2

tan– 1
x + cot– 1

x =
π

2

cosec– 1
x + sec– 1

x =
π

2
...(1.22)

tan– 1
x + tan– 1

y = tan− +

−

1

1

x y

xy
, where xy < 1, x > 0, y > 0

tan– 1
x – tan– 1

y = tan− −

+

1

1

x y

xy
...(1.23)
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x, y > 0

For example, if sin– 1
x = θ

x = sin θ = cos
π

θ
2

−
F
HG
I
KJ

∴  cos– 1
x =

π
θ

2
−

∴  sin– 1
x + cos– 1

x = 
π

2
.

1.7 TRIGONOMETRIC EQUATIONS

A trigonometric equation involves trigonometric expressions like sin θ, cos θ, etc.,

where θ is an unknown. The solution of the equation is the value or sometimes

values of θ that satisfies the equation.

Since the number of solutions of a trigonometric equation is infinite, the numeri-

cally smallest angle α is of importance, i.e., the equation sin θ = k has solutions,

θ = ( 1) ... 2, 1, 0,1, 2, 3, ...

(All integers ve or ve)

n

n I

n nπ α

∈


+ − = − −
 − +

Where α is numerically the smallest angle for which sin α = k

cos θ = k has solutions θ = 2nπ ± α (n ∈ I)

Where α is numercially the smallest angle for which cos α = k.

Similarly, for tan θ = k, the solutions are θ = nπ + α (n ∈ I)

Where α is numerically the smallest angle for which tan α = k.

Example 1.62: 2 3 12sin cosθ θ+ +  = 0, 0 ≤ θ ≤ π

Solution:

2 1 3 12( cos ) cos− + +θ θ = 0 i.e., 2 32cos cosθ θ−  – 3 = 0

∴ (cos )( cos )θ θ− +3 2 3  = 0

cos θ = 3  not possible; cos θ = −
3

2
or θ = α = 

5

6

π
or 

7

6

π
.

Since θ has between 0 and π, 
6

π
 is discarded. Hence, θ = 

5

6

π

Example 1.63: Given the usual trigonometric ratios, find the trigonometric ratios

of 18º, 36º, 54º, 72º.

Solution: Let A = 18º then, 2A = 36º = 90º – 3A
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sin 2A = sin (90 – 3A) = cos 3A

i.e., 2 sin A cos A = 4 cos3
A – 3 cos A

∴ cos A(2 sin A – 4 cos2
A + 3) = 0

Since, cos A ≠ 0, 2 sin A – 4 cos2
A + 3 = 0

∴ 2 sin A – 4(1 – sin2
A) + 3 = 0

∴ 4 sin2
A + 2 sin A – 1 = 0 (compare with ax

2 + bx + c = 0)

∴ sin A = sin 18º = 
2 2 5

8

− ±
 = 

1 5

4

− ±

∴ sin 18º =
1 5

4

− +
, a positive value

or              =
− −1 5

4
, a negative value is not possible in the first quadrant.

Hence, sin 18° = 
5 1

4

−

∴ cos 18º = 1 182− sin º  = 
10 2 5

4

+

tan 18º =
5 1

10 2 5

−

+

sin 36º = 2 sin 18º cos 18º = 
2

16
5 1 10 2 5( )( )− +

= 
10 2 5

4

−

cos 36º =
5 1

4

+

tan 36º =
5 1

10 2 5

+

−

Since, cos (90 – 2A) = sin 2A

i.e., cos 54º = sin 36º = 
10 2 5

4

−

sin 54º = cos 36º = 
5 1

4

+

sin 72º = cos 18º = 
10 2 5

4

+

cos 72º = sin 18º = 
5 1

4

−
.
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CHECK YOUR PROGRESS

14. Find (i) cos (tan– 1 3/4), (ii) sin cot– 1 x

15. Solve the following:

(i)   2 sin2 θ = 3 cos θ

(ii)  4 sin4 θ + 12 cos2 θ = 7

(iii) (1 – tan θ) (1 + sin 2θ) = 1 + tan θ

16. Solve the following:

(i)   cos 6θ + cos 4θ + cos 2θ + 1 = 0

(ii)  sec 4θ – sec θ = 2

(iii) cos (π/2 + 5θ) + sin θ – 2 cos 3θ + 0

(iv)  sin 3α = 4 sin θ sin (θ + α) sin (θ – α)

1.8 TRANSFORMATION OF TRIGONOMETRIC

RATIOS OF SUMS, DIFFERENCES AND

PRODUCTS

1. To Prove that for any Angles A and B

(1) sin (A + B) = sin A cos B + cos A sin B

(2) cos (A + B) = cos A cos B – sin A sin B

(3) tan (A +B) = 
tan A + tan B

1 – tan A tan B

Proof: Let the revolving line start from OX and trace out the angle XOY = A in the

anticlockwise direction. Let the revolving line further trace out the angle YOZ = B

in the same direction (see Figure 1.43).

Z

Y

X
O

B

A

A

P

R

M Q

N

Figure 1.43  Angles A and B in Anticlockwise Direction

From any point P on OZ, draw PM ⊥ OX and PN ⊥ OY. Through N draw

NR || OX to meet MP in R.

Then, ∠RPN = 90° – ∠PNR  = ∠RNO = A
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(1) sin (A + B) = 
OP

MP
 = 

OP

RPMR +

= 
OP

MR
 + 

OP

RP
 = 

OP

QN
 + 

OP

RP
(Where NQ ⊥ OX)

= 
ON

QN
⋅

OP

ON
 + 

NP

RP
⋅

OP

NP

= sin A cos B + cos A sin B.

(2) cos (A + B) = 
OP

OM
 = 

OP

MQOQ −

= 
OP

OQ
 – 

OP

MQ
 = 

OP

OQ
 – 

OP

RN

= 
ON

OQ
.

OP

ON
 – 

NP

RN
.

OP

NP

= cos A cos B – sin A sin B.

(3) tan (A +B) = 
OM

MP
 = 

RNOQ

RPQN

−

+

= 

OQ

RN

OQ

RP

OQ

QN

−

+

1

 = 

OQ

RP

RP

RN

OQ

RP
A

.1

tan

−

+

.

Since the angles RPN and QON are equal, the triangles RPN and QON are

similar, so that

PN

RP
= 

ON

OQ

i.e.
OQ

RP
= 

ON

PN
 = tan B.

Thus, tan (A +B) = 
BA

BA

tantan1

tantan
 

−

+
.

Note: The figure has been drawn for acute angles A, B and A + B. The

result is, however, true for all angles A and B.

For, let A
1
 = 90° + A, then sin A

1
 = cos A,

cos A
1

= – sin A

so that sin (A
1
 + B) = sin (90° + A + B)

= cos (A + B)

= cos A cos B – sin A sin B

= sin A
1
 cos B + cos A

1
 sin B.

Similarly, if B is increased by 90°, the result is again true and so on.

2. To prove that for any angles A and B

(1) sin (A – B) = sin A cos B – cos A sin B

(2) cos (A – B) = cos A cos B + sin A sin B

(3) tan (A – B) = 
tan A – tan B

1 + tan A tan B
.
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Proof: Let the revolving line starting from OX in anticlockwise direction trace out

the angle YOX = A and then revolving back in clockwise direction, trace out angle

YOZ = B. The revolving line thus traced out the angle XOZ = A – B (see Figure

1.44).

Y

Z

X
O

B

A

MQ

P

A

RN

Figure 1.44  Angles A and B in Anticlockwise and Clockwise Direction

From any point P on OZ, draw PM ⊥ OX, PN ⊥ OY, NQ ⊥ OX. Through N

draw NR || OX to meet MP produced at R.

Then, ∠ RPN = 90° – ∠ PNR  = ∠ RNY = A.

(1) sin (A – B) = sin XOZ

= 
OP

MP
 =

OP

PRMR −

= 
OP

MR
 – 

OP

PR
 = 

OP

QN
.

OP

PR

= 
ON

QN
 

ON

OP
 – 

NP

PR
 

OP

NP

= sin A cos B – cos A sin B.

(2) cos (A – B) = cos XOZ

= 
OP

OM
 = 

OP

QMOQ +
 = 

OP

OQ
 + 

OP

QM

= 
OP

NR

OP

OQ
+

= . .
OQ ON NR NP

ON OP NP OP
+

= cos A cos B + sin A sin B.

(3) tan (A – B) = tan XOZ

= 
OM

MP
 = 

QMOQ

PRMR

+

−
 = 

NROQ

PRQN

+

−

= 

OQ

NR

OQ

PR

OQ

QN

+

−

1

 = 

tan

1 .

PR
A

OQ

NR PR

PR OQ

−

+
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Since the angles RPN and NOQ are equal, the triangles RPN and NOQ are

similar, so that

OQ

PR
= 

ON

PN
 = tan B

 Thus tan, (A – B) = 
tan tan

1 tan tan

A B

A B

−

+

Note: The figure in this article is again drawn for acute angles A, B and

A +B, but the result can be proved for all angles A and B.

Trigonometrical Ratios of Multiple and Submultiple Angles to prove that:

(1) (i) sin 2A = 2 sin A cos A

(ii) cos 2A = 2 cos2 A – 1 = 1– 2 sin2 A = cos2 A – sin2 A

(iii) tan 2A = 
2

2 tan A

1 – tan A

Proof: sin (A + B) = sin A cos B + cos A sin B.

Put A = B

We have, sin 2A = sin A cos A + cos A sin A

= 2 sin A cos A.

(ii) Again, cos (A + B) = cos A cos B – sin A sin B

Put A = B

We have, cos 2A = cos A cos A – sin A sin A

= cos2 A – sin2 A.

Also,  cos2 A – sin2 A = (1– sin2 A) – sin2 A

= 1 – 2 sin2 A.

and cos2 A – sin2 A – cos2 A – (1 – cos2 A) = 2 cos2 A – 1.

(iii) Also, tan (A  + B) = 
BA

BA

tantan1

tantan

−

+
.

Put A = B

We have, tan 2A = 
AA

AA

tantan1

tantan

−

+
 = 

A

A

2tan1

tan2

−
.

(2)(i) sin 3A = 3 sin A – 4 sin3 A

(ii) cos 3A = 4 cos3 A – 3 cos A

(iii) tan 3A = 
3

2

3 tan A – tan A

1 – 3 tan A

Proof: (i) sin 3A = sin (A +2A)

= sin A cos 2A + cos A sin 2A

= sin A (1 – 2 sin2 A) + cos A (2 sin A cos A)

= sin A – 2 sin3 A + 2 sin A (1 – sin2 A)

= 3 sin A – 4 sin3 A.
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(ii) cos 3A = cos (A + 2A)

= cos A cos 2A – sin A sin 2A

= cos A (2 cos2 A – 1) – sin A (2 sin A cos A)

= 2 cos3 A – cos A –2 cos A (1– cos2 
A)

= 4 cos3 A – 3 cos A.

(iii) tan 3A = tan (A + 2A)

= 
AA

AA

2tantan1

2tantan

−

+
 = 

A

A
A

A

A
A

2

2

tan1

tan2
tan1

tan1

tan2
tan

−
−

−
+

= 
2

2 2

tan (1 tan ) 2 tan

(1 tan ) 2 tan

A A A

A A

− +

− −

= 
A

AA

2

3

tan31

tantan3

−

−
.

(3) (i) sin A = 
A A

2sin cos
2 2

   (ii) cos A= 2 2A A
cos sin

2 2
−

= 2 A
2cos 1

2
−  = 2 A

1 2sin
2

−

  (iii) tan A = 
2

A
2 tan

2
A

1 tan
2

−

Proof: Replace A by 
2

A
 in (1) of this subsection. All relations in (3) will immedi-

ately follow.

(4) (i) 
A

sin
2

= 
1 cos A

±
2

−

   (ii) 
A

cos
2

= 
1 + cos A

±
2

  (iii) 
A

tan
2

= 
1 cos A

±
1 + cos A

−

Proof: We have cos A = 
2

sin21
2 A

− , form (3)

Then,
2

sin2 2 A
= 1 – cos A

so that
2

sin 2 A
= 

2

cos1 A−
⇒

2
sin

A
 = 

2

cos1 A−
±
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Similarly, cos A = 1
2

cos2 2 −
A

⇒
2

cos2 2 A
= 1 + cos A

⇒
2

cos2 2 A
= 

2

cos1 A+

⇒
2

cos
A

= 
2

cos1 A+
±

Hence,
2

tan
A

= 

2
cos

2
sin

A

A

 = 
A

A

cos1

cos1

+

−
±

Example 1.64: If sin α = 
3

5
 and cos β  = 

9

41
, find the value of sin (α – β),

α, β being acute angles.

Solution: cos2 α = 1– sin2 α = 1 – 
9

25
 = 

16

25

⇒ cos2 α = 
4

5
±

Since α is acute angle, cos α = 
4

5

Also, sin2 β = 1 –  cos2 β

= 1 – 
81

1681
 = 

1600

1681

⇒ sin β = 
40

41
±

β is acute angle ⇒  sin β = 
4 0

4 1

Therefore, sin (α – β) = sin α cos β – sin β cos α

 = 
3 9 40 4 27 160 133

5 41 41 5 205 205

−
× − × = =

Example 1.65: Find the value of sin 18° and cos 18°.

Solution: Put 18° = x so that 90° = 5x

Then 2x = 90° – 3x

⇒ sin 2x = sin (90° – 3x) = cos 3x

or 2 sin x cos x = 4 cos3 x – 3 cos x

or 4 cos3 x – 2 sin x cos x – 3 cos x = 0

or cos x (4 cos2
x – 2 sin x – 3) = 0

or 4 cos2 x – 2 sin x – 3 = 0 since cos x ≠  0

or 4 (1 – sin2 x) – 2 sin x – 3 = 0
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or      4 sin2 x + 2 sin x – 1 = 0

⇒ sin x = 
2 20

8

− ±
 = 

4

51 +−
 or 

4

51 −−
.

Since, x = 18°. sin x is positive so that the value 
4

51 −−
 is rejected.

Hence, sin x = 
4

51 +−
i.e. sin 18° = 

4

51 +−

Also, cos 18° = °− 18sin1 2   = 












 −+
−

16

5215
1

=
16 6 2 5

1
16

− +
−  = 

4

5210 +
.

Example 1.66: If tan θ = 
12

5
 and θ is in third quadrant, find the value of

2 sin 3 cos
2 2

θ θ
− .

Solution: θ lies in third quadrant

⇒ θ lies between 180° and 270°

⇒
2

θ
 lies between 90° and 135°

⇒ sin 
2

θ
 is positive and cos 

2

θ
 is negative.

Now,   tan θ = 
12

5
 ⇒ sin θ = 

12

13

−
 and cos θ = 

5

13

−

(as θ lies in 3rd quadrant)

Therefore, cos 
2

θ
= – 

1 cos

2

+ θ
 = – 

8

26

and sin
2

θ
= 

1 cos

2

− θ
 = 

18

26

So 2 sin 
2

θ
 – 3 cos 

2

θ
= 

18 8
2 3

26 26
+  = 

9 4
2 3

13 13
+

= 
1

[6 6]
13

+  = 
12

13
.

Example 1.67: Prove that sin 5θ = 5 sin θ – 20 sin3 θ + 16 sin5 θ.

Solution: LHS = sin 5θ

= sin (2θ + 3θ)

= sin 2θ cos 3θ + cos 2θ sin 3θ

= 2 sin θ cos θ (4 cos3 θ – 3 cos θ)

+ (3 sin θ – 4 sin3 θ) (1 – 2 sin2 θ)

= 2 sin θ cos2 θ (4 cos2 θ – 3)

+ sin θ (3 – 4 sin2 θ) (1 – 2 sin2 θ)
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= sin θ [2(1 – sin2 θ) (1 – 4 sin2 θ)

+ (3 – 4 sin2 θ) (1 – 2 sin2 θ)

= sin θ [2 – 10 sin2 θ + 8 sin4 θ + 3 – 10 sin2 θ + 8 sin2 θ]

= 5 sin θ – 20 sin3 θ + 16 sin5 θ.

Example 1.68: Prove that 
sin A + sin 3A

cos A + cos3A
 = tan 2A.

 Solution: LHS= 
sin sin 3

cos cos3

A A

A A

+

+
 = 

3

3

sin 3sin 4 sin

cos 4 cos 3 cos

A A A

A A A

+ −

+ −

= 
2

2

4 sin (1 sin )

2 cos (2 cos 1)

A A

A A

−

−

= 
2

2 sin cos

cos cos 2

A A

A A

 = 
2 sin cos

cos 2

A A

A

= 
sin 2

cos 2

A

A
 = tan 2 A.

Example 1.69: Prove that 1 + cos2 2θ = 2 (cos4 θ + sin4 θ).

Solution: RHS = 2 (cos4 θ + sin4 θ)

= 2 [(cos2 θ – sin2 θ)2 + 2 sin2 θ cos2 θ]

= 2 [(cos 2θ)2 + 2 sin2 θ cos2 θ]

= 2 (cos 2θ)2 + 4 sin2 θ cos2 θ

= 2 (cos 2θ)2 + (sin 2θ)2

= (cos 2θ)2 + [(cos 2θ)2 + (sin 2θ)2]

= (cos 2θ)2 + 1 = LHS.

Example 1.70: If sin θ + sin φ = a, cos θ + cos φ = b, find the value of

tan
2

θ − φ
.

Solution:   sin θ + sin  φ = a

                  cos θ + cos φ = b

Squaring and adding, we get

(sin2 θ + cos2 θ) + (sin2 φ + cos2 φ) + 2 (sin θ sin φ + cos θ cos φ)

= a
2 + b

2

⇒2 {1 + cos (θ – φ)}= a2 + b2

⇒ 1 + cos (θ – φ) = 
2 2

2

a b+

Also,  1 – cos (θ – φ) = 
2 2

1 1
2

a b +
− −  
 

 = 
2 2

2
2

a b+
−  = 

2 2
4

2

a b− −
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⇒ tan
2

θ − φ
= 

1 cos ( )

1 cos ( )

− θ − φ
±

+ θ − φ
 = 

2 2

2 2

4 a b

a b

− −
±

+

Example 1.71: Find the value of sin 9° and cos 9°.

Solution: Now, cos 2θ = 1 –2 sin2 θ

Put θ = 9°, we get

cos 18° = 1 – 2 sin2 9°

cos 18° = 
10 2 5

4

+

So
10 2 5

4

+
= 1 – 2 sin2 9°

or 2 sin2 9° = 1 – 
10 2 5

4

+
 = 

4 10 2 5

4

− +

or sin2 9° = 
4 10 2 5

8

− +

or sin 9° = 
4 10 2 5

8

− +
±

Sin 9° is positive, so that the negative value is rejected.

Hence, sin 9° = 
4 10 2 5

8

− +
+

Also, cos 9° = 21 sin 9− °  = 
4 10 2 5

1
8

 − +
 −
 
 

= 
8 4 10 2 5

8

− + +
 = 

4 10 2 5

8

+ +

Example 1.72: Prove that 
tan sec 1

tan sec 1

A A

A A

+ −

− +
 = 

1 sin

cos

A

A

+
.

Solution: LHS = 
tan sec 1

tan sec 1

A A

A A

+ −

− +
 = 

sin 1
1

cos cos

sin 1
1

cos cos

A

A A

A

A A

+ −

− +

= 
sin 1 cos

sin 1 cos

A A

A A

+ −

− +
 = 

2

2

sin 2 sin
2

sin 2 sin
2

A
A

A
A

+

−

= 

2

2

2 sin cos 2 sin
2 2 2

2 sin cos 2 sin
2 2 2

A A A

A A A

+

−
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= 

cos sin
2 2

cos sin
2 2

A A

A A

+

−

= 

cos sin cos sin
2 2 2 2

cos sin cos sin
2 2 2 2

A A A A

A A A A

   
+ +   

   

   
− +   

   

= 

2 2

2 2

cos sin 2 sin cos
2 2 2 2

cos sin
2 2

A A A A

A A

+ +

−

= 
1 sin

cos

A

A

+
 = RHS.

Example 1.73: Prove that:

θ
tan 45°

2

 
+ 

 
= 

1 sin θ

1 sin θ

+

−
, where 0 < θ < 90°.

Solution: LHS = tan 45
2

θ 
° + 

 

= 
tan 45 tan

2

1 tan 45 tan
2

θ
° +

θ
− °

 = 
1 tan

2

1 tan
2

θ
+

θ
−

= 
cos sin

2 2

cos sin
2 2

θ θ
+

θ θ
−

 = 

2

2 2

cos sin
2 2

cos sin
2 2

θ θ 
+ 

 
θ θ

−

= 
1 2 sin cos

2 2

cos

θ θ
+

θ
 = 

2

1 sin

1 sin

+ θ

± − θ

= 
1 sin

(1 sin ) (1 sin )

+ θ

± − θ + θ
 = 

1 sin

1 sin

+ θ
±

− θ

Since 0 < θ < 90°, we have 
θ

2
 < 45°, so that tan 45

2

θ 
° + 

 
 is positive.

Thus, tan 45
2

° +
θ 

 
 

 = 
1 sin

1 sin

+ θ

− θ
 = RHS.

Example 1.74: Prove that

cos15 sin15
3

cos15 sin15

°+ °
=

°− °
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Solution: LHS= 
1 tan15

1 tan15

+ °

− °
 = 

tan 45 tan15

1 tan 45 tan15

+

−

= tan (45 + 15) = tan 60° = 3  = RHS.

Example. 75: Prove that:

 tan 2A – tan A = 
2 sin

cos + cos

A

A 3A
.

Solution: LHS = 
sin 2 sin

cos 2 cos

A A

A A
−

= 
sin 2 cos sin cos 2

cos 2 cos

A A A A

A A

−

= 
sin (2 )

cos 2 cos

A A

A A

−
 = 

sin

cos 2 cos

A

A A

= 
2sin

2cos cos 2

A

A A

= 
2

2sin

2cos (2cos 1)

A

A A−

= 3

2sin

4cos 2cos

A

A A−

= 
3

2sin

4cos 3cos cos

A

A A A− +

= 
2sin

cos3 cos

A

A A+

= 
2sin

cos cos3

A

A A+

= RHS

Hence, the result follows.

Example 1.76: Prove that:

cot α = tan α + 2 tan 2α + 4 tan 4α + 8 cot 8α.
Solution: Consider cot α – tan α – 2 tan 2α – 4 tan 4α – 8 cot 8α

= 
cos sin

sin cos

 α α
− 

α α 
 – 2 tan 2α – 4 tan 4α – 8 cot 8α

=
cos 2α

sin α cosα
 – 2 tan 2α – 4 tan 4α – 8 cot 8α

=
2cos 2α sin 2α

2
sin 2α cos 2α

−  – 4 tan 4α – 8 cot 8α

=
2 2

cos 2α sin 2α
2

sin 2α cos 2α

 −
  
 

 – 4 tan 4α – 8 cot 8α

=
cos 4 sin 4

2 2 4 8 cot 8
sin 4 cos 4

α α
× − − α

α α

=
2 2

cos 4α sin 4α
4 8 cot8α

sin 4 cos 4α

 −
−  α 
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=
cos8α

4 2 8 cot 8α
sin 8α

× −  = 8 cot 8α – 8 cot 8α = 0

This proves the result.

Example 1.77: Given that:

tan A + tan B = p and tan A tan B = q

find sin2
 (A + B) and cos 2 (A + B).

Solution:  sin2 (A + B)  = 
2

1

cos ec ( )A B+
 = 

2

1

1 cot ( )A B+ +

       = 

2

1

1
1

tan ( )A B

+
+

 = 
2

2

tan ( )

1 tan ( )

A B

A B

+

+ +

= 

2

2

2

2

(1 )

1
(1 )

p

q

p

q

−

+
−

 = 
2

2 2(1 )

p

p q+ −

and cos 2 (A + B) = cos2 (A + B) – sin2 (A + B)

= 
2 2

2 2

cos ( ) sin ( )

cos ( ) sin ( )

A B A B

A B A B

+ − +

+ + +

= 
2

2

1 tan ( )

1 tan ( )

A B

A B

− +

+ +
 = 

2

2

2

2

1
(1 )

1
(1 )

p

q

p

q

−
−

+
−

= 
2 2

2 2

(1 )

(1 )

q p

q p

− −

− +
.

Example 1.78: If sec2
 A – 2 tan2

 B = 2, prove that:

2 cos 2A – cos 2B + 1 = 0.

Solution: sec2 A – 2 tan2 B = 2

⇒
2

2 2

1 2 sin

cos cos

B

A B

−  = 2

⇒ cos2 B – 2 sin2 B cos2
A = 2 cos2 A cos2 

B

⇒ cos2 
B = 2 cos2 A (cos2 B + sin2 B) = 2 cos2 A

Now, 2 cos 2A – cos 2B +1

= 2 (2 cos2 A – 1) – (2 cos2 
B – 1) + 1

= 2 (cos2 B – 1) – (2 cos2 B – 1) + 1

= 2 cos2 B – 2 – 2 cos2 B + 1 + 1

= 0.

This proves the result.
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Example 1.79: Given that:

cos 45° = 
1

2
. Show that:

1
sin 292

2

° 
 
 

 = – 
1

2 + 2
2

.

Solution: 
1

sin 292
2

 °
 
 

 = 
1 °

sin 270 22
2

 
° + 

 
 = – 

°1
cos 22

2

Now cos 45° = 2
°1

2 cos 22 1
2

 
− 

 

⇒⇒⇒⇒
1

2
= 2

°1
2 cos 22 1

2

 
− 

 

⇒⇒⇒⇒
2

°1
2 cos 22

2

 
 
 

= 
1

1
2

+  = 
2 1

2

+

⇒⇒⇒⇒
°1

cos 22
2

 
 
 

= 
2 1

2 2

+
 = 

1
2 2

2
+

⇒⇒⇒⇒
°1

sin 292
2

 
 
 

= 22
2

1
+− .

This proves the result.

Example 1.80: ABC is an acute-angled triangle inscribed in a circle of centre

O and radius OA (= 10 cm). If cos ∠ BOC  = 
5

4
, calculate:

(i) sin ∠BAC

(ii) The length of BC

(iii) cos ∠OBC

Solution:

(i)     As per Figure 1.45,  sin ∠BAC = ∠BOC

⇒ cos 2 ∠BAC = cos ∠BOC = 
4

5

⇒2 cos2 ∠BAC – 1 = 
4

5

D

O

CB 

A

Figure 1.45
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⇒ 2 cos2 ∠BAC = 
9

5

⇒ cos2 ∠BAC = 
9

10

⇒ sin2∠BAC = 1 – 
9

10
 = 

1

10

⇒ sin ∠BAC = 
1

10
(as BAC is an acute angle).

(ii) Produce BO to meet the circle at D and join CD.

Then, BCD is a right angle (angle in a semi-circle). Also, ∠BDC

= ∠BAC (angles in same  segment).

So, sin ∠BDC = 
BC

BD
 = 

20

BC

⇒ sin ∠BAC = 
20

BC

⇒
1

10
= 

20

BC ⇒ BC =
20

10
 = 2 10 .

(iii) cos ∠OBC = cos (90° – ∠BDC) = cos (90° – ∠BAC)

= sin ∠BAC = 
1

10
.

Example 1.81: If tan A tan 2A ≠ – 1 prove that:

tan 3A tan 2A tan A = tan 3A – tan 2A – tan A.

Solution: Now, tan 3A tan 2A tan A – tan 3A

= tan 3A (tan 2A tan A – 1)

= tan (2A + A) (tan 2A tan A – 1)

= 
tan 2 tan

1 tan tan 2

A A

A A

+

−
 (tan A tan 2A – 1)

= – (tan 2A + tan A)

This proves the result.

Example 1.82: Prove that:

1 sin cos

1 sin cos

A A

A A

+ −

+ +
 = tan

A

2

Solution: LHS = 
(1 cos ) sin

(1 cos ) sin

A A

A A

− +

+ +

= 

2

2

2 sin 2 sin cos
2 2 2

2 cos 2 sin cos
2 2 2

A A A

A A A

+

+

= 

2 sin sin cos
2 2 2

2 cos sin cos
2 2 2

A A A

A A A

 
+ 

 

 
+ 

 

 = tan
2

A
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Example 1.83: If tan x = 
1 cos

sin

y

y

−
, then prove that one of the solutions will

be y = 2x. Use this result to prove that 
1

tan 7
2

°
 = 6 – 3 + 2 – 2 .

Solution: Now, 
1 cos

sin

y

y

−
 = 

1 cos 2

sin 2

x

x

−
 = 

22 sin

2 sin cos

x

x x
 = tan x

⇒ y = 2x is one of the solution.

Thus,
1

tan 7
2

°
= 

1 cos15

sin15

− °

°

But cos 15° = cos (45 – 30) = 
3 1 1 1

2 22 2
+  = 

3 1

2 2

+

and sin 15° = sin (45 – 30) = 
1 3 1 1

2̀ 22 2
−  = 

3 1

2 2

−

⇒
1

tan 7
2

°
= 

3 1
1

2 2

3 1

2 2

+
−

−
 = 

2 2 3 1

3 1

− −

−

= 
(2 2 3 1) ( 3 1)

2

− − +

=
2 6 2 3 2 2 4

2

− + −
= 6 3 2 2− + −

Example 1.84: Prove that:

π
1 cos

8

 
+ 

 
 

3π
1 cos

8

 
+ 

 
 

5π
1 cos

8

 
+ 

 
 

7π
1 + cos

8

 
 
 

 = 
1

8

Solution: Now, 
3

cos
8

π
 = cos

2 8

π π 
− 

 
 = sin

8

π
−

5π
cos

8
= 

π π
cos

2 8

 
+ 

 
 = 

π
sin

8
−

7π
cos

8
= 

π
cos

8

 
π − 
 

 = 
π

cos
8

−

LHS = 
π

1 cos
8

 
+ 

 
 

π
1 sin

8

 
+ 

 
 

π
1 sin

8

 
− 

 
 

π
1 cos

8

 
− 

 

= 
2 π1 cos

8

 
− 

 
 

2 π1 sin
8

 
− 

 

= 
2 2π π

sin cos
8 8

= 

2
1 π π

2 sin cos
4 8 8

 
 
 

 = 

2
1 π

sin
4 4

 
 
 

= 

2
1 1

4 2

 
 
 

 = 
1

8
 = RHS.
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Example 1.85: Prove that:

cosec6 α – cot6
 α = 3 cosec2

 α cot2
 α + 1

Solution: LHS = cosec6 α – cot6 α = (cosec2 α) – (cot2∝)3

   = (cosec2 α – cot2 α) (cosec4 α + cosec2 α cot2 α + cot4 α)

   = (cosec4 α + cosec2 α cot2 α + cot4 α)

   = (cosec2 α – cot2 α)2 + 3 cosec2 α cot2 α

   = 1+ 3 cosec2 α cot2 α = LHS.

Example 1.86: If A = 580°, prove that:

2 sin
2

A
= 1 sin 1 sinA A− + − − .

Solution: A= 580° ⇒ 
2

A
 = 290°

Now, sin cos
2 2

A A
+ = sin 290° + cos 290°

    = sin (270° + 20°) + cos (270° + 20°)

    = – cos 20° + sin 20° = – ve (as cos 20° > sin 20°)

Again, sin cos
2 2

A A
−  = – cos 20° – sin 20° = – ve

Now, 
2

sin cos
2 2

A A 
+ 

 
= 1 + sin A ⇒ sin cos

2 2

A A
+  = 1 sin A− +

Similarly, sin cos
2 2

A A 
− 

 
 = 1 sin A− −

Therefore,
2

sin2
A

= 1 sin A− + 1 sin A− −

This proves the result.

Example 1.87: Prove that tan A tan (60° + A) tan (120° + A) = – tan 3A.

Solution: LHS = tan A tan (60° + A) tan (120° + A)

  = tan 60 tan
tan

1 tan tan 60

A
A

A

 ° +
 

− ° 

tan120 tan

1 tan tan120

A

A

 ° +
 

− ° 

  = 
3 tan

tan
1 3 tan

A
A

A

 +
  − 

 
3 tan

1 3 tan

A

A

 − +
 
 + 

  = 













−

−

A

A
A

2

2

tan31

3tan
tan  = 

3

2

tan 3 tan

1 3 tan

A A

A

−

−

  = 














−

−
−

A

AA

2

3

tan31

tantan3  = – tan 3A.
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Example 1.88: Express 3 cosθ sinθ+  as cosine of an angle. Hence, Find

their greatest and least values.

Solution: 3 cosθ sinθ+

= 
3 1

2 cos sin
2 2

 
θ + θ  

 

= 
π π

2 cos cosθ sin sinθ
6 6

 
+ 

 
 = 2 cos (

6

π
 –θ) or 

π
2 cos θ

6

 
− 

 
.

Since the greatest value of cos α = 1 and least value is – 1, the greatest and

least values of 3 cosθ sinθ+  are 2 and – 2 respectively..

Example 1.89: If A + B = 
π

4
, prove that (1 + tan A) (1 + tan B) = 2.

Solution: LHS = (1 + tan A) (1+ tan B)

= 1 + tan A + tan B + tan A tan B

Now, tan (A + B) = 
π

tan
4

⇒  
tan tan

1 tan tan

A B

A B

+

−
= 1

⇒ tan A + tan B = 1 – tan A tan B

Therefore, LHS = 1 + 1 – tan A tan B + tan A tan B  = 2 = RHS.

Example 1.90: Prove that:

 
1 – sin 36° + cos36°

1 + sin 36° + cos36°
 = 

3

2

3 tan 9° – tan 9°

1 – 3 tan 9°

Solution: LHS= 
2

2

(2 cos 18 ) sin 36

(2 cos 18 ) sin 36

° − °

° + °

= 
2

2

2 cos 18 2 sin18 cos18

2 cos 18 2 sin18 cos18

° − ° °

° + ° °

= 
2 cos18 (cos18 sin18 )

2 cos18 (cos18 sin18 )

° ° − °

° ° + °

= 
1 tan18

1 tan18

− °

+ °
 = 

π
tan 18

4

 
− ° 

 
= tan (45° – 18°) = tan (27°)

RHS = tan 3 (9°) = tan 27°.

Thus, LHS = RHS.

Example 1.91: Prove that

 
4 4 4 4π 3π 5π 7π

cos cos cos cos
8 8 88

+ + +  = 
3

2
.

Solution:

 LHS = 4 4 4 41 1 1 1
cos 22 cos 67 cos 112 cos 157

2 2 2 2

° ° ° °
+ + +
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= 
2 2

1 cos 45 1 cos135

2 2

+ ° + °   
+   

   
2 2

1 cos 225 1 cos315

2 2

+ ° + °   
+ +   
   

= 

2 2
1 1

1 1
2 2

2 2

   
+ −   

   +
   
   
   

2 2
1 1

1 1
2 2

2 2

   
− +   

   + +
   
   
   

= 

1 1
1 2 1 2

2 2

2

+ + + + −
 = 

3

2
 = RHS.

Example 1.92: Prove that sin θ tan θ is greater than 2 (1 – cos θ), if θ is an

acute angle. Indicate the step where you have used the fact that θ should be an

acute angle.

Solution: Now, sin θ tan θ – 2 (1 – cos θ)

= 2

2 2

2 tan 2 tan
2 2 2 2 sin

2
1 tan 1 tan

2 2

θ θ
θ 

−  θ θ  + −

(
θ θ

because sin θ 2 sin cos
2 2

=  = 
2 2

2 sin cos
2 2

sin cos
2 2

θ θ

θ θ
+

 = 
2

2 tan
2

1 tan
2

θ 



θ + 


= 

2

2

2 2

4 tan
12 4 sin

2
sec 1 tan

2 2

θ
θ

−
θ θ

−

= 

2 2

2

2 2

sin cos
2 24 sin

2
cos sin

2 2

θ θ 
 θ

− θ θ −
  

= 

2

2

2 2

θ
cos

24 sin 1
θ θ2

cos sin
2 2

 
 θ

− 
 −
  

=

2

2

2 2

sin
24 sin

2
cos sin

2 2

θ 
 θ
 θ θ −
  

= 

2

2
sin

24 sin 0
2 cos

θ 
 θ
 

θ 
  

 > 0 [Since θ is acute angle, cos θ > 0]

⇒ sin θ tan θ > 2 ( 1 – cos θ).
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Transformation of Products into Sums or Differences

We know that

       sin A cos B + sin B cos A = sin (A + B) ...(1.24)

and  sin A cos B – sin B cos A = sin (A –B) ...(1.25)

Adding equation (1.24) and (1.25), we get

               2 sin A cos B= sin (A + B) + sin (A – B)

Subtracting equation (1.24) and (1.25), we get

               2 cos A sin B= sin (A +B) – sin (A – B)

Again,

cos A cos B + sin A sin B = cos (A – B) ...(1.26)

cos A cos B – sin A sin B = cos (A + B) ...(1.27)

Adding equation (1.26) and (1.27), we get

2 cos A cos B = cos (A – B) + cos (A + B)

        Subtracting equation (1.26) and (1.27), we get

2 sin A sin B = cos (A – B) – cos (A + B)

Thus, we have the following formulas:

     2 sin  A cos B = sin (A + B) + sin (A – B)

     2 cos  A sin B = sin (A + B) – sin (A – B)

     2 cos  A cos B = cos (A + B) + cos (A – B)

     2 sin  A sin B  = cos (A – B) – cos (A + B)

Transformation of Sums or Differences into Products

To prove that for all angles C and D,

 sin C + sin D = 
C + D C D

2 sin cos
2 2

−−−−

 sin C – sin D = 
C + D C D

2 cos sin
2 2

−−−−

 cos C + cos D = 
C + D C D

2 cos cos
2 2

−−−−

 cos C – cos D = 
C + D D C

2 sin sin
2 2

−−−−

Proof: We know that for all values of A and B,

sin (A + B) = sin A cos B + cos A sin B

sin (A – B) = sin A cos B – cos A sin B

By addition and subtraction, we have

sin (A + B) + sin (A – B) = 2 sin A cos B

sin (A + B) – sin (A – B) = 2 sin A cos B.

Put A + B = C and A – B = D



Trigonometry

NOTES

Self-Instructional Material 83

We get 
2

C D
A

+
= ,

2

C D
B

−
= .

Then, sin C + sin D = 2 sin cos
2 2

C D C D+ −

sin C – sin D = 2 cos sin
2 2

C D C D+ −
.

Similarly, by adding and subtracting the relations,

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B.

We have,

cos (A + B) + cos (A – B) = 2 cos A cos B

cos (A + B) – cos (A – B) = – 2 sin A sin B.

Put A + B = C, A – B = D

So that
2

C D
A

+
= ,

2

C D
B

−
= .

 Hence, cos C + cos D = 2 cos cos
2 2

C D C D+ −

cos C – cos D = 2 sin sin
2 2

C D C D+ −
−

= 2 sin sin
2 2

C D D C+ −
.

To prove that,

 (i) sin (A + B)  sin (A – B) = sin2 A – sin2 B

(ii) cos (A + B)  cos (A – B) = cos2 A – sin2 B = cos2 B –  sin2 A

Proof: (i) sin (A + B) sin (A – B)

= (sin A cos B + cos A sin B) (sin A cos B – cos A sin B)

= sin2 A cos2 B – cos2 A sin2 B

= sin2 A (1 – sin2 B) – (1 – sin2 A) sin2 B

= sin2 A – sin2 A sin2 B – sin2 B + sin2 A sin2 B

= sin2 A – sin2 B.

(ii) cos (A + B) cos (A – B).

= (cos A cos B – sin A sin B) (cos A cos B + sin A sin B)

= cos2 A cos2 B – sin2 A sin2 B

= cos2 A (1 – sin2 B) – (1 – cos2 A) sin2 B

= cos2 A – cos2 A sin2 B – sin2 B + cos2 A sin2 B

= cos2 A – sin2 B

= (1– sin2 A) – (1 – cos2 B)

= cos2 B – sin2 
A
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Example 1.93: If the angles A, B, C, of a triangle are in A.P, show that:

cos cos

sin sin

C A

A C

−

−
= tan B.

Solution: Since in any triangle
A + B + C = π

and C = π–(A + B)
cos C = – cos (A + B)

and sin C = sin (A + B)

LHS = 
cos ( ) cos

sin sin ( )

A B A

A A B

− + −

− +

  = 

2 cos cos
2 2

2 cos sin
2 2

B B
A

B B
A

 
− + 

 

 
− + 

 

  = 
π

cot cot
2 2 2

B A C +  
= −  

  

  = tan
2

A C+ 
 
 

 = tan B

As , , are in A.P.
2

A C
A B C B

+ 
⇒ = 

 

Example 1.94 Prove that:
2 2sin – sin

sin cos – sin cos

A B

A A B B
 = tan (A + B).

Solution: LHS = 
2 2

2 sin ( ) sin ( )

sin sin

A B A B

A B

+ −

−

   = 
2 sin ( ) sin ( )

2 cos ( ) sin ( )

A B A B

A B A B

+ −

+ −
 = tan (A + B) = RHS.

Example 1.95: Prove that 4 (cos3
 10° + sin3

 20°) = 3 (cos 10° + sin 20°).

Solution: LHS= 4 (cos 10° + sin 20°) (cos2 10° + sin2 20°

+ cos 10° sin 20°)

= 4 (cos 10° + sin 20°) (1 – sin2 10° + sin2 20°

+ cos 10° sin 20°)

= 4 (cos 10° + sin 20°) (1 + sin 30° sin 10°

–  cos 10° sin 20°)

= 4 (cos 10° + sin 20°) 
sin10º

1
2


+



(sin 30º sin10º )

2

+ 
− 


.

= 2 (cos 10° + sin 20°) 
1

2 sin10 sin10
2

 
+ ° − − ° 

 

= 2 (cos 10° + sin 20°) 
3

2

 
 
 

= 3 (cos 10° + sin 20°)  = RHS.
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Example 1.96: Given x = cos 55°, y = cos 65°

z = cos 175°. Prove that:

x + y + z = 0 and xy + yz + zx = 
3

-
4

.

Solution: x + y + z = cos 55° + cos 65° + cos 175°

= 2 cos 60° cos 5° + cos (180° – 5°)

= cos 5° – cos 5° = 0.

xy + yz + zx = cos 55° cos 65° + cos 65° cos 175° + cos 175° cos 55°

= 
1

2
 (cos 120° + cos 10°) + 

1

2
 (cos 240° + cos 110°)

+ 
1

2
 (cos 230° + cos 120°)

= – 
1

4
 + 

1

2
 cos 10° – 

1

4
 + 

1

2
 cos 110°10°

+ 
1

2
 cos 230° – 

1

4

= – 
3

4
 + 

1

2
 [cos 10° + cos 110° + cos 230°]

= – 
3

4
 + 

1

2
 [2 cos 60° cos 50° – cos 50°]

= – 
3

4
 + 

1

2
 [cos 50° – cos 50°] = – 

3

4
 .

Example 1.97: Prove that:

sin2
 B = sin2

 A + sin2
 (A – B) – 2 sin A cos B sin (A – B).

Solution: RHS= sin2 A + sin2 (A – B) – (2 sin A  cos B) sin (A – B)

= sin2 A + sin2 (A – B) – [sin (A + B)

+ sin (A – B)] × sin (A – B)

= sin2 A + sin2 (A – B) –  sin (A + B)

sin (A – B) – sin2 (A – B)

= sin2 A – sin (A + B) sin (A – B)

= sin2 A – (sin2 A – sin2 B)

= sin2 B = LHS.

Example 1.98: If y sin α = x sin (2β + α)

show that (x + y) cot (α + β) = (y – x) cot β.

Solution: y sin α= x sin (2β + α)

⇒
y

x
= 

sin (2β )

sin

+ α

α

      Applying componendo and dividendo
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⇒
y x

y x

+

−
 = 

sin (2β α) sin α

sin (2β α) sinα

+ +

+ −

⇒
y x

y x

+

−
= 

2sin (α β) cosβ

2cos (α β) sin β

+

+
⇒

y x

y x

+

−
 = tan (α + β) cot β

⇒    (y + x) cot (α + β) = (y – x) cot β

This proves the result.

Example 1.99: Prove that:

cos cos sin sin

sin sin cos cos

n n

A B A B

A B A B

   + +
+   

− −   

= cotn A B
2

2

− 
 
 

 or 0 according as n is even or odd.

Solution:

nn

BA

BA

BA

BA









−

+
+









−

+

coscos

sinsin

sinsin

coscos

=
2 cos cos 2 sin cos

2 2 2 2

2 sin cos 2 sin sin
2 2 2 2

n n
A B A B A B A B

A B A B A B B A

+ − + −   
   

+   − + + −   
      

=
( ) ( )

cot cot
2 2

n n
A B A B− −   

+ −   
   

So, LHS = 2 cot
2

n A B− 
 
 

if n is even and 0 if n is odd.

Example 1.100: If sin x + sin y = a and cos x + cos y = b show that

cos (x + y) = 

2 2

2 2

b a

b a

−

+

Solution: Now, sin x + sin y = a

⇒ 2 sin cos
2 2

x y x y+ −
= a

      and cos x + cos y = b

⇒ 2 cos cos
2 2

x y x y+ −
= b

Therefore, tan
2

x y+ 
 
 

= 
a

b

Now, cos (x + y) = 

2

2

1 tan
2

1 tan
2

x y

x y

+ 
−   

+ 
+   

 = 

2

2

2

2

1

1

a

b

a

b

−

+

 = 
2 2

2 2

b a

b a

−

+
.

Example 1.101: Prove that in a triangle ABC:

sin (A – B) sin (B – C) sin (C – A)
+ +

sin A sin B sin B sin C sin C sin A
 = 0.
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Solution: LHS = 
sin sin ( ) sin sin ( ) sin sin ( )

sin sin sin

C A B A B C B C A

A B C

− + − + −

                 = 

sin ( ) sin ( ) sin ( ) sin ( )

sin ( ) sin ( )

sin sin sin

A B A B B C B C

C A C A

A B C

++ − + −
+ + −

(Using A + B + C = π)

                  = 
2 2 2 2 2 2

(sin sin ) (sin sin ) (sin sin )

sin sin sin

A B B C C A

A B C

− + − + −

                   = 0 = RHS.

Example 1.102: Prove that, 1 + cos 56° + cos 58° – cos 66°

= 4 cos 28° cos 29° sin 33°

Solution: Now,  1 – cos 66° = 2 sin2 33°.

Therefore, LHS = 2 sin2 33° + (cos 56° + cos 58°)

= 2 sin2 33° + 2 cos 57° cos 1°

= 2 sin2 33° + 2 cos (90° – 33°) cos 1°

= 2 sin2 33° + 2 sin 33° cos 1°

= 2 sin 33° (sin 33° + cos 1°)

= 2 sin 33° (cos 57° + cos 1°)

= 2 sin 33° (2 cos 29°cos 28°)

= 4 cos 28° cos 29° sin 33° = RHS.

Example 1.103: Prove that sin2 12° + sin2 21° + sin2 39° + sin2 48°

   = 1 + sin2 9° + sin2 18°.

Solution: Consider

(sin2 12° – sin2 18°) + (sin2 21° – sin 9°)

= (– sin 30° sin 6°) + (sin 30° sin 12°)

= sin 30° (sin 12° – sin 6°)

= 
1

2
 (2 sin 3° cos 9°) = sin 3° cos 9°

Also,1 – sin2 39° –  sin2 48° = cos2 39° –  sin2 48°

= cos 87° cos 9° = sin 3° cos 9°

Therefore, (sin2 12° – sin2 18°) + (sin2 21° – sin2 9°)

= 1 – sin2 39° – sin2 48°.

The proves the result.

Example 1.104: Prove that cos 10° cos 50° cos 70° = 
3

8
.

Solution:  LHS = cos 10° cos 50° cos 70°

= cos 10° 
1

(cos120º cos 20º )
2

 
+ 
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= 
1

2
 cos 10° 

1
cos 20º

2

 
− + 
 

= 
1

2
 cos 10° 21

2cos 10º 1
2

 
− + − 
 

= 
1

2
 cos 10° 23

2 cos 10
2

 
− + ° 
 

= 
1

4
 cos 10° (4 cos2 10° – 3)

= 
1

4
(4 cos3 10° – 3 cos 10°)

= 
1

4
 cos 3 × 10° = 

1

4
 cos 30°

= 
1 3

4 2
 = 

3

8
 = RHS.

Example 1.105: If  A + B + C = π, then prove that:

tan A + tan B + tan C = tan A tan B tan C.

Solution: A + B + C = π

⇒ A + B = π – C

⇒ tan (A + B ) = – tan C

⇒
tan tan

1 tan tan

A B

A B

+

−
= – tan C

⇒tan A + tan B + tan C = tan A tan B tan C

This proves the result.

Example 1.106: If A + B + C = π, then prove that:

2 2 2
sin sin sin

2 2 2

A B C
+ +  = 1 2

2 2 2

A B C
sin sin sin− .

Solution: Consider,

2 2 2
1 sin sin sin

2 2 2

A B C
− − −  = 2 2 2

cos sin sin
2 2 2

A B C
− −

= 
2cos cos sin

2 2 2

A B A B C+ −   
−   

   

= 
2

cos cos cos
2 2 2

A B A B A B+ − +     
−     

     
as

2

C

= 
π

2 2

A B+ 
−  
 

= cos cos cos
2 2 2

A B A B A B+  − +      
−      

      

= cos 2 sin sin
2 2 2

A B A B+   
   
   

= 2 sin sin sin
2 2 2

A B C
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Hence, 2 2 2sin sin sin
2 2 2

A B C
+ +  = 1 2 sin sin sin

2 2 2

A B C
− .

Example 1.107: If A + B + C = π, prove that:

cos2
 A + cos2

 B + cos2
 C = 1 – 2 cos A cos B cos C.

Solution:  Consider 1 – (cos2 A + cos2 B + cos2 C)

= (1 – cos2 A) – cos2 B – cos2 C

= sin2 A – cos2 B – cos2 C

= – cos (A + B) cos (A – B) – cos2 C

= – cos (π – C) cos (A – B) – cos2 C

= cos C cos (A – B) – cos2 C

= cos C [cos (A – B) – cos C]

= cos C [cos (A – B) – cos (π – (A + B)]

= cos C [cos (A – B) + cos (A + B)]

= cos C [2 cos A  cos B]

= 2 cos A cos B  cos C

Thus, cos2A + cos2B + cos2C = 1 – 2cosA cosB cosC

This proves the result.

CHECK YOUR PROGRESS

17. Prove that sin 105° + cos 105° = cos 45°.

18. Find the value of tan 75° and hence prove that tan 75° + cot 75° = 4.

19. Prove that 
cos13° + sin13°

cos13° – sin13°
 = tan 58°.

20. Prove that 
°1

cot 22
2

 – 
°1

tan 22
2

 = 2

21. Prove that 
cos A + sin A

1 + sin 2A
 = 1.

22. If, A + B + C = π, show that

sin 2A + sin 2B – sin 2C = 4 cos A cos B sin C.

23. In a ∆ ABC, prove that

sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.

1.9 SUMMARY

In this unit, you have learned that:

• Trigonometry is that branch of mathematics which deals with the

measurement of angles.



90   Self-Instructional Material

Trigonometry

NOTES

• The term ‘trigonometry’ is derived from two Greek words ‘trigonon’ (a

triangle) and ‘metron’ (a measure), meaning the measurement of triangles.

• Nowadays, the term trigonometry is used for the measurement of angles in

general, whether the angles are of a triangle or not.

• An angle is defined as the rotation of a line about one of its extremities in a

plane from one position to another.

• Two lines are said to be at right angles, if a revolving line starting from one

position to another describes one-quarter of a circle.

• When a revolving line moves in the anticlockwise direction, the angle

described by it is said to be positive; otherwise, it is called negative.

• To measure angles, a particular angle is fixed and is taken as a unit of

measurement so that any other angle is measured by the number of times it

contains that unit.

• There are three systems of measurement:

(i) Sexagesimal system: In this system, a right angle is divided into 90 equal

parts called degrees. Each degree is divided into 60 equal parts called

minutes and each minute is further subdivided into 60 equal parts called

seconds.

Thus, 1 right angle =90 degrees

1 degree =60 minutes

1 minute =60 seconds

In symbols, a degree, a minute and a second are respectively written as 1º;

1′, 1′′.

(ii) Centesimal system: In this system, a right angle is divided into 100 equal

parts called grades. Each grade is divided into 100 equal parts called

minutes and each minute is divided into 100 equal parts called seconds.

               Thus, 1 right angle = 100 grades

                    1 grade = 100 minutes

                    1 minute = 100 seconds

(iii) Circular system: In this system, the unit of measurement is radian. A

radian is defined as the angle subtended at the centre of a circle by an

arc equal to the radius of the circle.

• Trigonometry deals with the problem of measurement of triangles and periodic

functions.

• The applications of trigonometry to business cycles and other situations are

concerned with the properties and applications of circular or periodic

functions.

• A function with period p(p ≠ 0) if f(x + p) = f(x) is periodic.

• The amplitude of a sine wave is the absolute value of one half of the difference

between the greatest and the least ordinates of the wave.
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1.10 KEY TERMS

• Trigonometry: It is that branch of mathematics which deals with

measurement of angles.

• Angle: It is defined as the rotation of a line about one of its extremities in a

plane from one position to another.

• Radian: It is the angle subtended at the centre of a circle by an Arc equal

to the radius of the circle.

1.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In case the revolving line moves in anticlockwise direction, then the angle

described by it is said to be positive, else, it is called negative.

2. A radian is the measure of the angle made at the centre of a circle by an arc

whose length equals the radius of the circle.

3. The area of a circle with radius r is πr
2.

4. The area of a sector AOB subtending an angle θ at the centre is 
1

2

2
r θ.

5. (i) If a line is horizontal or parallel to the x-axis, its inclination is zero, i.e.,

θ = 0.

(ii) If a line is perpendicular to the x-axis, θ = 90º.

6. The fundamental period of a periodic function like f(t) = sin bt or g(t) =

cos bt is given by:

T = 
2π

| |b

7. If cot θ is positive, θ lies in first or third quadrant.

If cosec θ is negative, θ lies in third or fourth quadrant.

In order that cot θ is positive and cosec θ is negatie, we see that θ must lie in

third quadrant.

8.
2 3

4 3

sin cos

cos sin

θ θ

θ θ

+

+
 = 

2 3

4 3

tan

tan

θ

θ

+

+
 = 

8

5
3

4
12

5

+

+
 = 

23

32
.

9.
p q

p q

cos sin

cos sin

θ θ

θ θ

+

−
 = 

p q

p q

cos

sin

cos

sin

θ

θ

θ

θ

+

−

 = 
p q

p q

cot

cot

θ

θ

+

−
 = 

p

q
q

p

q
q

2

2

+

−

 = 
p q

p q

2 2

2 2

+

−
.
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10. tan θ = 2 sin θ ⇒ sin θ = 2 sin θ cos θ

⇒ sin θ (1 – 2 cos θ) = 0

⇒ sin θ = 0 or 1 – 2 cos θ = 0

        sin θ = 0⇒ θ = 0º as θ is acute.

1 – 2 cos θ = 0 ⇒  cos θ = 
1

2
 ⇒ θ = 60º = π/3.

This angle is also acute. So, θ = 0 or π/3

11. Since A + B + C=180º

A + B=180º – C.

⇒  cot (A + B) + cot C= cot (180º – C) + cot C

= – cot C + cot C = 0.

12. Solving given equations for sin A and sin B, we get sin A = 
1

2
 and sin B = 

3

2

⇒ A=30º or 150º, B = 60º or 120º

⇒ A=30º and B = 60º or 120º

If A = 30º and B = 60º, then C = 90º and if A = 30º and B = 120º, then

C = 30º.

13. 3 cos2 θ – sin2 θ = 1

⇒ 3 cos2 θ – (1 – cos2 θ)=1

⇒ 4 cos2 θ=2

⇒ cos2 θ=
1

2

⇒ cos θ= ±
1

2

Since 180º ≤ θ ≤ 270º ⇒ cos θ = 
−1

2
⇒ θ = 225º.

14. (i)  If tan−1 3

4
 = x, tan x = 

3

4
, cos x = 

4

5
∴ x = cos−1 4

5

 cos (tan– 1 3/4) = cos cos−F
HG

I
KJ

1 4

5
 = 

4

5
.

(ii) If cot– 1
x = y then cot y = x

  ∴ sin y =
1

1 2+ x

  ⇒ sin cot–1
x = 

2

1

1+ x

15.      (i)   θ = 2nπ ± 
3

π
, α = 

3

π

(ii)   θ = nπ + (– 1)n 
4

π 
− 
 

, α = –
4

π

(iii)  θ = nπ – 
4

π
, α = – 

4

π
 0 ≤ φ ≤ π
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  16. (i)  /4, 3 /4

/6, 3 /6, 5 /6

θ = π/2


θ = π π
θ = π π π

(ii)  θ = nπ + π/10

(iii) θ = nπ – π/4

(iv) θ = nπ ± 
3

π

  17. LHS = sin 105° + cos 105°

= sin (60° + 45°) + cos (60° + 45°)

= (sin 60° cos 45° + cos 60° sin 45°)

   + (cos 60° cos 45° – sin 60° sin 45°)

= 
3 1 1 1

2 22 2

 
+  

 
 + 

1 1 3 1

2 22 2

 
−  

 
 = 

2

1

RHS = cos 45° = 
2

1
.

  Hence, the result follows.

  18. tan 75°  =  tan (45° + 30°)

                         =
tan 45 tan 30

1 tan 45 tan 30

° + °

− ° °
 = 

1
1

3

1
1

3

+

−

                        = 
3 1

3 1

+

−
 = 

( )
2

3 1

2

+

                        = 
4 2 3

2

+
 = 2 + 3

          Now tan 75° + cot 75° =
32

1
32

+
++

     = 
)32()32(

)32(
)32(

−+

−
++

     = 
34

)32(
)32(

−

−
++

     = )32(32 −++  = 4.

19. LHS = 
cos13 sin13

cos13 sin13

° + °

° − °

=

sin13
1

cos13

sin13
1

cos13

°
+

°

°
−

°

  = 
1 tan13

1 tan13

+ °

− °
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 =
tan 45 tan13

1 tan 45 tan13

° + °

− ° °
(as tan 45° = 1)

 = tan (45° + 13°) = tan 58° = RHS.

20.             LHS = 
°1

cot 22
2

 – 
°1

tan 22
2

= 

2 21 1
cos 22 sin 22

2 2

1 1
sin 22 cos 22

2 2

° °   
−   

   
° °

= 
2 cos 45

1 1
2 sin 22 cos 22

2 2

°

° °
 = 

2 cos 45

sin 45

°

°

= 2 cot 45° = 2 = RHS.

21. LHS = 
cos sin

1 sin 2

A A

A

+

+

= 
2 2

cos sin

cos sin 2 sin cos

A A

A A A A

+

+ +

= 
2

cos sin

(cos sin )

A A

A A

+

+
= 

cos sin

cos sin

A A

A A

+

+
 = 1.

22. LHS = 2 sin (A + B) cos (A – B) – sin 2C

= 2 sin C cos (A – B) – 2 sin C  cos C

= 2 sin C [cos (A – B) – cos C]

= 2 sin C [cos (A – B) + cos (A + B)]

= 2 sin C [2 cos A cos B ] = 4 cos A cos B cos C.

23. LHS = sin 2A + sin 2B + sin 2C

= 2 sin (A + B) cos (A – B) + sin 2C

= 2 sin (A + B) cos (A – B) + sin [2π – 2(A + B)]

    as A + B + C = π

= 2 sin (A + B) cos (A – B) – sin 2(A + B)

= 2 sin (A + B) [cos (A – B) – cos (A + B)]

= 2 sin (A + B) [2 sin A  sin B]

= 2 sin (π – C) [2 sin A  sin B]

= 4 sin A sin B sin C = RHS.
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1.12 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Show 
( )a b c

a b c

+ +

+ +

2

2 2 2
 = 

cot / cot / cot /

cot cot cot

A B C

A B C

2 2 2+ +

+ +

2. If the angles A, B, C are in AP, show

2
2

cos
A C−

 = 
a c

a c ac

+

+ −2 2

3. If A = 45º, B = 75º, show a c b+ −2 2  = 0.

4. If cos A = 
sin

sin

B

C2
, prove that the triangle is isosceles.

5. If cot A + cot B + cot C = 3 , prove that the triangle is equilateral.

6.    Define the three systems of measurement of angles.

Long-Answer Questions

1. Find the values of (i) sin 36° and cos 36°, (ii) sin 15° and cos 15°.

2. If sin A = 
1

10
, sin B = 

1

5
, show that A + B = 45°.

3. Prove that tan A + tan B = 
sin ( )

cos cos

A B

A B

+
.

4. If tan θ = 
a

b
, tan φ = 

c

d
 prove that tan (θ + φ) = 

ad dc

bd ac

+

−
.

5. Prove that cos (A + B) + sin (A – B) = 
π π

2 sin cos
4 4

A B
   

+ +   
   

.

6. Express cos θ – sin θ as sine or cosine of an angle and find the greatest and

least values of (cos θ – sin θ).

7. If A + B = π
4

, prove that (cot A – 1) (cot B – 1) = 2.

8. Prove that 
sec 8 1

sec 4 1

A

A

−

−
 = 

tan 8

tan 2

A

A
.

9. If 2 tan α = 3 tan β, show that tan (α – β) = 
sin 2β

5 cos 2β−
.

10. If cos α = 
3

5
 and cos β = 

5

13
, find the values of 2 2(α β) α β

sin and cos .
2 2

− − 
 
 

11. Prove that:

 (i) cos 5θ = 16 cos5 θ – 20 cos3 θ + 5 cos θ

(ii) cos 4θ = 1 – 8 cos2 θ + 8 cos4 θ



96   Self-Instructional Material

Trigonometry

NOTES

12. Prove that tan (60° + A) + tan (120° + A) + tan A = 3 tan3 A.

13. Prove that 1 sin 2θ

1 sin 2θ

+

−
 = 2 π

tan θ
4

 
+ 

 
.

14. Prove that 
2

sin 16 cos 2 cos 6 sin12

cos 4 cos sin 6 sin 8

A A A A

A A A A

−

−
 = tan 4A.

15. If sin θ = 
13

5
 and θ lies in third quadrant, prove that the value of 

θ θ
2 cos 3 sin

2 2
−

= 
17

26
−

16. Prove that

 (i) 
1

cot 7
2

°  = 
1 cos 15

sin 15

+ °

°

(ii) 
1

tan 7
2

°  = 
1 cos 15

sin 15

− °

°
.

17. Prove that   
1

cot 7
2

°  = 2 3 4 6+ + + .

18. Prove that 3 32π
cos cos

3
A A
 

− + 
 

3 32π 3
cos cos

3 4
A A
 

+ + = 
 

.

19. Prove that 
3 3 3 3cos cos sin sin

cos sin

x x x x

x x

− +
+  = 3.

20. Prove that 
1 cos cos cos

1 cos cos cos

A B C

C A B

− + +

− + +
 = 

tan
2

tan
2

A

B
 if A + B + C = 180°.

21. Prove that sin 3A + sin 2A – sin A = 
3

4 sin cos cos .
2 2

A A
A

22. Prove that 
2π 4π 8π 14π

16 cos cos cos cos 1.
15 15 15 15

=

23. Prove that sin 3A = 4 sin A sin (60° + A) sin ( 60° – A).

24. Prove that 
2 2

2 2

1 sin θ cos θ

1 sin θ cos θ

+ −

+ +
 = tan θ.

25. Prove cot– 1
x = 

1

2

1π − −tan x .

26. Prove

   (i)  sec– 1 2 = 
π

2
(ii) cosec– 1 (– 1) = 

3

2
π (iii) sec–1 (– 2) = 

4

3
π

     (iv) cos cos− −F
HG
I
KJ +

F
HG
I
KJ

1 13

5

2

5
 = 

π

4
   (v) 2

1

3

1

7

1 1tan tan− − −
F
HG
I
KJ  = 

π

4
.
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27. Prove that cos2 A + cos2 B + cos2 C = 1 – 2 cos A cos B cos C

28.  Prove that sin sin sin2 2 2

2 2 2

A B C
+ +  = 1 2

2 2 2
− sin sin sin

A B C

29. Prove that sin (B + C – A) + sin (C + A – B) + sin (A + B – C) = 4 sin A

sin B sin C

30. Find the measure of the angle between the hour hand and the minute hand

of a clock at a quarter past one.

31. Show that:

(i) (sin6
A + cos6

A) = 3(sin4
A + cos4

A) – 1

(ii)
tan sec

tan sec

A A

A A

+ −

− +

1

1
 = 

1 + sin

cos

A

A

(iii)
cot tan

cot tan

A B

B A

+

+
 = cot A tan B

(iv) (cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1

(v)
1

1

2
+ −

+ +

F
HG

I
KJ

sin cos

sin cos

θ θ

θ θ
 = 

1

1

−

+

cos

cos

θ

θ

32. If tan q = 
p

q
, show that  

p q

p q

sin cos

sin cos

θ θ

θ θ

−

+
 = 

p q

p q

2 2

2 2

−

+

Show that  
1 sin 1 sec

1 cos 1 cosec

A A

A A

+ +

+ +
 = tan A

33. Prove  that:

(i)
sec

tan

x x

x

+

+

cosec

1 2
 = cosec x.

(ii) (1 + sec θ)(1 – cos θ) = tan θ sin θ

(iii)
1

1

2

2

−

+

cot

cot

x

x
 = sin2

x – cos2
x.

(iv) (tan x + cos x)2 = sec2
x + cosec2

x.

(v)
sin cos

sin cos

3 3θ θ

θ θ

+

+
 = 1 – sin θ cos θ.

(vi) sec x + tan x = 
1

sec tanx x−
.

(vii)
cos

sin

x

x1 +
 = 

1 − sin

cos

x

x
.
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(viii) sec x + tan x = 
1

sec tanx x−
.

(ix)
cos

sin

x

x1 +
 = 

1 − sin

cos

x

x
.

(x) sin3
t + cos3

t + sin t cos2
t + sin2 cos t = sin t + cos t.

34. Prove the following identities:

(i)
cos cos

sin sin

2 4

4 2

A A

A A

+

−
 = cot A.

(ii)
sin sin

sin sin

2 2

2 2

A B

A B

−

+
 = 

tan ( )

tan ( )

A B

A B

−

+
.

(iii) sin3
x cos3

x = 3 2 6

32

sin sinx x− .

(iv) sin 2α + sin 2β + sin 2γ = 4 cos α cos β cos γ, where α + β + γ = π

(v)
1 8

8

− cos x
 = sin2 2x cos2 2x.

(vi)
1

1

2

2

−

+

tan

tan

θ

θ
 = cos 2θ.

(vii) tan
t

2
 = 

1 − cos

sin

t

t
 = 

sin

cos

t

t1 +

(viii) If u = tan
x

2
 then sin x = 

2

1 2

u

u+
, cos x = 

1

1

2

2

−

+

u

u
.

(ix)
2

1 2+ cos t
 = sec2

t.

(x) cos4 θ – sin4 θ = cos 2θ.

(xi)
1 2 2

1 2 2

+ +

+ −

sin cos

sin cos

A A

A A
 = cot A.

35. Prove that:

cos (A + B) cos (A – B) = cos2
A – sin2

B

    36.
tan ( )

cot ( )

A B

A B

+

−
 = 

sin sin

cos sin

2 2

2 2

A B

A B

−

−

    37.  
1 2 2

1 2 2

+ −

+ +

sin cos

sin cos

A A

A A
 = tan A

Hint : LHS = 
1 2 1 2

1 2 2 1

2

2

+ − −

+ + −

sin cos ( sin )

sin cos ( cos )

A A A

A A A
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    38. If tan θ = 
b

a
 then a cos2 θ + b/2 sin 2θ = a.

 a cos θ + b sin θ = a b
a

a b

b

a b

2 2

2 2 2 2
+

+
+

+

F
H
GG

I
K
JJ

cos sinθ θ

   =  a b
2 2+ +(sin cos cos sin )α θ α θ

= a b
2 2+ +sin ( )θ α , where tan α = 

b

a
.

    39.
sec

sec

8 1

4 1

A

A

−

−
 = 

tan

tan

8

2

A

A
(Note: sin 8A = 2 sin 4A cos 4A)

        (Hint: LHS = 
1 8

8

4

1 4

−

−

cos

cos

cos

cos

A

A

A

A
 = 

2 4 4

8 2 2

2

2

sin cos

cos sin

A A

A A⋅

= 
sin sin cos

cos sin

4 2 4 4

8 2 22

A A A

A A

⋅ ⋅

⋅
.)

    40. If A + B + C = π/2 show

sin2
A + sin2

B + sin2
C = 1 – 2 sin A sin B sin C

    41. If A + B  = C then show

cos2
A + cos2

B + cos2
C = 1 + 2 cos A cos B cos C

    42. Show sin2 30º sin 45º cos 45º = 
1

8
.

    43.  
cos cos cos

cos cos cos

6 6 4 15 2 10

5 5 3 10

A A A

A A A

+ + +

+ +
 = 2 cos A.

[Hint: 2 cos A(cos 5A + 5 cos 3A + 10 cos A)]

= (cos 6A + cos 4A) + 5(cos 4A + cos 2A) + 10 (cos 2A + 1)

= cos 6A + 6 cos 4A + 15 cos 2A + 10

1.13 FURTHER READING

Khanna, V.K, S.K. Bhambri, C.B. Gupta and Vijay Gupta. Quantitative

Techniques. New Delhi: Vikas Publishing House.

Khanna, V.K, S.K. Bhambri and Quazi Zameeruddin. Business Mathematics.

New Delhi: Vikas Publishing House.
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UNIT 2 DIFFERENTIATION

Structure

2.0 Introduction
2.1 Unit Objectives
2.2 Limits and Continuity (Without Proof)

2.2.1 Functions and their Limits
2.2.2 h-Method for Determining Limits

2.2.3 Expansion Method for Evaluating Limits
2.2.4 Continuous Functions

2.3 Differentiation and Differential Coefficient
2.4 Derivatives of Functions

2.4.1 Algebra of differentiable Functions

2.4.2 Differential Coefficients of Standard Functions
2.4.3 Chain Rule of Differentiation

2.5 Derivatives: Tangent and Normal
2.6 Differentiation of Implicit Functions and Parametric Forms

2.6.1 Parametric Differentiation

2.6.2 Logarithmic Differentiation

2.6.3 Successive Differentiation

2.7 Partial Differentiation
2.8 Maxima and Minima of Functions

2.9 Summary
2.10 Key Terms

2.11 Answers to ‘Check Your Progress’
2.12 Questions and Exercises
2.13 Further Reading

2.0 INTRODUCTION

In Mathematics, differentiation refers to the act of finding derivatives. Derivative is

defined as the instantaneous rate of change of a function. The derivative gives the
slope of the tangent to the graph of the function at a point. Thus, it is a mathematical
formulation of the rate of change.

Differentiation expresses the rate of change of any quantity y with respect

to the change in another quantity x, with which it has a functional relationship.

2.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Understand differentiation

• Understand how to check the continuity of functions

• Learn about differential coefficient

• Understand algebra of differentiable functions

• Analyse tangent and normal derivatives
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• Explain the differentiation of implicit functions and parametric forms

• Define partial differentiation

• Learn about maxima and minima of functions

2.2 LIMITS AND CONTINUITY (WITHOUT PROOF)

2.2.1 Functions and their Limits

In Mathematics, you usually deal with two kinds of quantities, namely constants

and variables. A quantity which is liable to vary is called a variable quantity or

simply a variable. Temperature, pressure, distance of a moving train from a

station are all variable quantities. On the other hand, a quantity that retains its value

through all mathematical operations is termed as a constant quantity or a con-

stant. Numbers like 4, 5, 2.5, π, etc., are all constants.

If x is a real variable (i.e., x takes up different values that are real numbers).

Then in quantities log x, sin x, x2, etc., log, sin, square are the functions.

Let us write y = x2.

Therefore, if x = 2, then y = 4, if x = 3, then y = 9, etc.

Thus, for each value of x, y gets a unique corresponding value and this value is

assigned each time by a certain rule (namely, square). This rule is what we call a

function.

So, in general, by a function of x, we mean a rule that gives us a unique value

corresponding to each value of x.

So, if y =  sin x, then whenever we give a different value to x, we get a

corresponding unique value for y with the assistance of the function sine.

When we are dealing with any function, we simply write

y = f (x)

and say that y is a function of x although to be very correct we should say that y is

the value assigned by the function f corresponding to a value of x. And we call x as

the independent variable and y as dependent variable.

Functions play important role in Mathematics, Physics and Social Sciences.

A function which assigns a fixed value for every value of x is called a constant

function. For example, f (x) = 3 is a constant function, since for any value of x,

f (x) remains equal to 3.

The next important notion is that of the limit of a function. It is quite possible

that f (x) may not be defined for all values of x. As an illustration, consider

f (x) = 
x

x

2 25

5

−

−
. This is a function of x, provided x takes all real values except 5. If



Differentiation

NOTES

Self-Instructional Material 103

it were defined at x = 5, we would have got f (5) = 
25 25

5 5

−

−  = 
0

0
; a meaningless

quantity. 
0

0
 can take any finite value whatsoever, like 

0

0
 = 5. 

0

0
 = π, etc., since

0 × 5 = 0, 0 × π = 0. One could perhaps say here that why don’t we cancel

x – 5 first and then put x = 5 to get f (5) equal to 10. There is a lapse in this

argument as x – 5 is zero when x = 5 and cancellation of zero factor is not allowed

in Mathematics, because you would get very absurd results like 1 = 2 and 3 = 15,

etc., since 0 × 1 = 0 × 2 and 0 × 3 = 0 × 15. As a consequence you cannot

determine f (5), the value of f (x) at x = 5. But you should not leave the problem

here. Instead you try to evaluate the value of f (x) when x is very near to 5

(and this will finally lead you to a value that would almost be the value of f (5)).

Thus, you can evaluate f (x) at x = 4.9998 or x = 5.00001. The technique is

quite simple. Cancel x–5 first (this step is perfectly legitimate as x is not equal

to 5); then substitute the value of x. For example, f (4.9998) = 4.9998 + 5 9.9998

and f (5.00001) = 5.00001 + 5 = 10.00001.

We now write down some of the values given to x and the corresponding

values acquired by f (x) in Tables 2.1 and 2.2. In first table values of x are

increasing upto 5 (being always less than 5) and in second table values of x are

decreasing down to 5 (being always greater than 5).

Table 2.1  Increasing Value of x

Value of x Value of f (x)

4 9

4.235 9.235

4.976 9.976

4.99998 9.99998

4.9999999 9.999999

↓ ↓

Table 2.2 Decreasing Value of x

Value of x Value of f (x)

7 12

6.31 11.31

5.7984 10.7984

5.2175 10.2175

5.0039 10.0039

5.0000001 10.0000001

         ↓        ↓



104   Self-Instructional Material

Differentiation

NOTES

The above is expressed mathematically as: x tends to 5 from the left

(in Table 2.1) and x tends to 5 from the right (in Table 2.2). In the first case we

write x → 5– and in the second case we write x → 5+.

Observe the pattern of change in the second column of each table. One could,

after slight concentration see that in the first situation f (x) → 10– while in the

second case f (x) → 10+. Thus, you are tempted to assert that f (x) approaches

10 (both from left and from right) as x approaches 5. This number 10, we call limit

of f (x) as x approaches 5.

This fact is denoted by, 
5

Lim ( )
x

f x
→

= 10.

Consider now any small positive number, say, 0.01. When | x – 5 | < 0.01,

i.e., – 0.01 < x – 5 < 0.01 or 4.99 < x < 5.01, then – 0.01 < f (x) – 10 < 0.01

Or, | f (x) – 10 | < 0.01

 (4.99 < x < 5.01 and x ≠ 5 ⇒ f (x) = x + 5

This yields in turn f (x) – 10 = x – 5

So, – 0.01 < f (x) – 10 < 0.01)

One can repeat the above experiment by starting with another small positive

number say 0.00002 and note that whenever | x – 5 | < 0.00002,

Then, | f (x) – 10 | < 0.00002.

The expected conclusion will be that, however a small positive number ε we

may start with, we shall always be able to find a δ > 0 such that whenever

| x – 5 | < δ then | f (x) – 10 | < ε. In the above illustration δ = ε will suffice.

Thus, you are led to the following definition of limit.

You say that Lim ( )
x a

f x
→

 = l if corresponding to any ε > 0, we can find δ > 0,

such that | f (x) – l | < ε whenever | x – a | < δ.

Let us evaluate some limits using this definition. Later on we’ll give other con-

venient methods too.

Example 2.1: Evaluate Lim
x a

x
→

.

Solution: Let ε > 0 be any number.

Take, δ = ε. Evidently δ > 0.

Now, | x – a | < δ  ⇒  | f (x) – a | < ε

Since, f (x) = x.

Hence, Lim
x a

a
→

.
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Example 2.2: Evaluate 
2Lim

x a
x

→
.

Solution: Let ε > 0 be any number.

Take, δ = – 2 + 4 + ε . Clearly δ > 0

Now, | x + 2 | = | x – 2 + 4 | < | x – 2 | + 4 < δ + 4

So, | x – 2 | < δ ⇒ | x
2 – 4 | = | x + 2 |  |x – 2| < d2 + 4 δ = ε

Hence, 2

2
Lim
x

x
→

 = 4.

Example 2.3: Determine 
3

1
Lim
x

.
x→

Solution: Let ε > 0.

Put, δ = 
9

1 3

ε

+ ε

Now, | x – 3 | < δ ⇒ | x – 3 | < 
9

1 3

ε

+ ε
...(1)

Also, | x – 3 | < δ ⇒ –δ < x – 3

⇒ x > 3 – δ = 3 – 
9

1 3

ε

+ ε
 = 

3

1 3+ ε

⇒
1

x
< 

1 3

3

+ ε

...(2)

Equations (1) and (2) imply

1 1

3x
− = 

3

3

x

x

−
 < 

9

1 3

ε

+ ε
 
1 3 1

3 3

+ ε
⋅  = ε

Consequently, 
3

1
Lim
x x→

 = 
1

3
.

Example 2.4: Find out the limit of 
2 1

1

x

x

−

−
 as x → 1.

Solution: Let ε > 0 be any number.

Take δ = ε.

Now | x – 1 | < δ⇒ | x – 1 | <ε

⇒ | x + 1 – 2 | < ε

⇒
2

1
2

1

x

x

−
−

−
 < ε

⇒
2

1

1
Lim

1x

x

x→

−

−
 = 2.
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2.2.2 h-Method for Determining Limits

You put a + h in place of x and simplify such that h gets cancelled from denomina-

tor and numerator. Putting h = 0, you get limit of f (x) as x → a.

Example 2.5: Evalute 

2

21

1
Lim

1x

x

x→

−

−
.

Solution: 
3

21

1
Lim

1x

x

x→

−

−
= 

3

20

(1 ) 1
Lim

(1 ) 1h

h

h→

+ −

+ −

= 

2 3

20

3 3
Lim

2h

h h h

h h→

+ +

+

= 

2

0

3 3
Lim

2h

h h

h→

+ +

+

= 
3

2
.

2.2.3 Expansion Method for Evaluating Limits

This method is applicable to the functions which can be expanded in series. Fol-

lowing expansions are often utilized.

(1) (1 + x)n = 1 + nx + 
2 3

( 1) ( 1)( 1)

2! 3!

n n x n n n x− − −
+  + . . . provided | x | < 1

and n is any real number.

Note: If n is a positive integer, the expansion on RHS has finite number of

terms only.

(2) log (1 + x) = x – 
2 3 4

. . .
2 3 4

x x x
+ − + ∞     provided | x | < 1.

(3) ex = 1 + x + 
2 3

. . .
2! 3!

x x
+ + ∞

(4) sin x = x – 
3 5

. . .
3! 5!

x x
+ ∞

(5) cos x = 1 – 
2 4

. . .
2! 4!

x x
+ ∞

The method will be illustrated by means of the following examples.

Example 2.6: Show that 
0

sin
Lim
x

x

x→
 = 1.

Solution:
0

sin
Lim
x

x

x→
= 

3 5

0

. . .
3! 5!Lim

x

x x
x

x→

− +
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= 

2 4

0
Lim 1 . . .

3! 5!x

x x

→

 
− +  

 
 = 1.

Note: The result of Example 2.6 shall be frequently used later on.

Example 2.7: Evaluate 
0

Lim
x x

x

e e

x

−

→

−
.

Solution: 
0

Lim
x x

x

e e

x

−

→

−

= 

2 3 2 3

0

1 . . . 1 . . .
2! 3! 2! 3!

Lim
x

x x x x
x x

x→

   
+ + + − − + −      

   

= 

3 5

0

2 .. .
3! 5!

Lim
x

x x
x

x→

 
+ +  

 

= 

2 4

0
Lim 2 1 . . .

3! 5!x

x x

→

 
+ + +  

 

= 2.

Notes:

       1. 
0

Lim ( )
x

f x
→

= l if and only if

              Lim ( )
x a

f x
→ − = l = Lim ( )

x a
f x

→ + .

If one of the two equalities fails to hold, then we say that limit of f (x) as

x → a does not exist.

Consider 
0

1Lim
x x→

. It can be easily seen that, if x → 0 –, then 
1

x
 → – ∞ while,

if x → 0+, then 
1

x
 → ∞ . So, 

1

0
Lim

xx→
 does not exist.

2. If Lim
x a→

 f(x) exists, then it must be unique.

Example 2.8: f(x) is defined as under

f (x) = 0         for x < 0

= 
1

2
 – x  for x > 0.

Show that 
2

( )Lim
x

f x
→

 does not exist.

Solution:
0

Lim ( )
x

f x
→ −

= 
0

(0 )Lim
h

f h
→

−  = 0.

Also,
0

( )Lim
x

f x
→ +

= 
0

(0 )Lim
h

f h
→ +

+  = 
0

1
Lim

2h

f h
→

 
− 

 

=  
1

2
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Since, 
0 0

Lim ( ) Lim ( )
x x

f x f x
→ − → +

≠ ,

           
0

Lim ( )
x

f x
→

 does not exist.

Notes: 1. If Lim ( )
x a

f x
→

 = l and Lim ( )
x a

g x
→

 = m, then

(i) Lim[ ( ) ( )]
x a

f x g x
→

±  = l ± m

(ii) Lim[ ( ) ( )]
x a

f x g x
→

 = lm

(iii) 
( )

Lim
( )x a

f x

g x→
 = 

l

m
 provided m ≠ 0

(iv) 
( )Lim[ ( )]g x

x a

f x
→

 = lm, provided lm is defined.

2. If f (x) < g (x) for all x, then Lim ( ) Lim ( )
x a x a

f x g x
→ →

≤ .

2.2.4 Continuous Functions

We have seen in Example 2.2 that 2

2
Lim
x

x
→

= 4, which is same as value of x2 at x = 2.

Whereas, in Example 2.4, 
2

1

1
Lim

1x

x

x→

−

−
 = 2, but the function itself is not defined as

x = 1.

Again consider, f (x) = 
2 9

3

x

x

−

−
, x ≠ 3

= 1,    x = 3

In this case, 
2

3

9
Lim

3x

x

x→

−

−
= 6, and f (3) = 1.

Thus, a function may possess a limit as x → a but it may or may not be defined

at x = a. Even if it is defined at x = a, its value may not be equal to its limit. This

prompts us to define the following type of functions.

A function f (x) is said to be continuous at x = a, if Lim ( )
x a

f x
→

 = f (a).

In other words,  f (x) is said to be continuous at x = a, if given ε > 0, there

exists δ > 0, such that |  f (x) – f (a) | < ε, whenever | x – a | < δ.

Example 2.9: Check for continuity at x = 0, the function (x) = | x |.

Solution: By definition of absolute value, we can write.

f (x) = x for all x ≥ 0

= – x for all x < 0

We note that, f (0) = 0

Further,
0

Lim ( )
x

f x
→ −

= 
0

Lim (0 )
h

f h
→

−  = 
0

Lim ( )
h

h
→

− −  = 0
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Also,
0 0

Lim ( ) Lim (0 )
x h

f x f h
→ + →

+ = 
0

Lim
h

h
→

 = 0.

Thus,
0

Lim ( )
h

f x
→

= 0 = f (0)

Hence,  f (x) is continuous at x = 0.

2.3 DIFFERENTIATION AND DIFFERENTIAL

COEFFICIENT

Let y be a function of x. We call x an independent variable and y dependent

variable.

Note: There is no sanctity about x being independent and y being dependent.
This depends upon which variable we allow to take any value, and then
corresponding to that value, determine the value, of the other variable. Thus in
y = x2, x is an independent variable and y a dependent, whereas the same function

can be re-written as x = y . Now y is an independent variable, and x is a depen-

dent variable. Such an ‘inversion’ is not always possible.

For example, in y = sin x + x3 + log x + x1/2, it is rather impossible to find x in
terms of y.

Differential coefficient of f (x) with respect to x

Let, y = f (x)   ...(2.1)

and let x be changed to x + δx. If the corresponding change in y is δy, then

y + δy = f (x + δx)  ...(2.2)

Equations (2.1) and (2.2) imply that

δy = f (x + δx) – f (x)

⇒
δ

δ

y

x
= 

( δ ) ( )

δ

+ −f x x f x

x

δ 0

( δ ) ( )
Lim

δ→

+ −

x

f x x f x

x

, if it exists, is called the differential coefficient of y

with respect to x and is written as 
dy

dx
.

Thus,
dy

dx
= 
δ 0

δ
Lim

δx

y

x→
 = 

δ 0

( δ ) ( )
Lim

δx

f x x f x

x→

+ −
.

Let f (x) be defined at x = a. The derivative of f (x) at x = a is defined as

0

( ) ( )
Lim
h

f a h f a

h→

+ −
, provided the limit exists, and then it is written as f′ (a) or

x a

dy

dx =

 
 
 

. We sometimes write the definition in the form f′ (a) =
( ) ( )

Lim
x a

f x f a

x a→

−

−
.
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Note:  f′ (a) can also be evaluated by first finding out 
dy

dx
 and then putting in

it, x = a.

Notation: 
dy

dx
 is also denoted by y′ or y

1
 or Dy or f′ (x) in case y = f (x).

Example 2.10: Find 
dy

dx
 and 

3x

dy

dx =

 
 
 

 for y = x
3
.

Solution: We have y = x3

Let δx be the change in x and let the corresponding change in y be δy.

Then, y + δy = (x + δx)3

⇒ δy = (x + δx)3 – y = (x + δx)3 – x3

= 3x
2 (δx) + 3x (δx)2 + (δx)3

⇒
δ

δ

y

x
= 3x

2 + 3x (δx) + (δx)2

Consequently,
dy

dx
= 

δ 0

δ
Lim

δx

y

x→
 = 3x

2

Also,
3x

dy

dx =

 
 
 

= 3 . 32 = 27

Example 2.11: Show that for y = | x |, 
dy

dx
 does not exist at x = 0.

Solution: If 
dy

dx
 exists at x = 0, then

0

(0 ) (0)
Lim  
h

f h f

h→

+ −
 exists.

So,
0

(0 ) (0)
Lim
h

f h f

h→ +

+ −
= 

0

(0 ) (0)
Lim
h

f h f

h→ −

− −

−

Now, f (0 + h) = | h |,

So,
0

(0 ) (0)
Lim
h

f h f

h→ +

+ −
= 

0

0
Lim
h

h

h→ +

−
 = 

0
Lim
h

h

h→ +
 = 1

Also,
0

(0 ) (0)
Lim
h

f h f

h→ −

− −

−
= 

0

0
Lim
h

h

h→ −

− −

−

= 
0

Lim
h

h

h→ − −
 = – 1

Hence,
0

(0 ) (0)
Lim
h

f h f

h→ +

+ −
≠ 

0

(0 ) (0)
Lim
h

f h f

h→ −

− −

−
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Consequently, 
0

(0 ) (0)
Lim
h

f h f

h→

+ −
 does not exist.

Notes: 1. A function f (x) is said to be derivable or differentiable at x = a if its
derivative exists at x = a.

2. A differentiable function is necessarily continuous.

Proof: Let f (x) be differentiable at x = a.

Then 
0

( ) ( )
Lim
h

f a h f a

h→

+ −
 exists, say, equal to l.

     
0

( ) ( )
Lim
h

f a h f a

h→

+ −
 = 0

⇒ 
0

Lim
h→

 [ f (a + h) – f (a)] = 0

⇒ 
0

Lim
h→

  f (a + h) = f (a)

⇒ 
0

Lim
h→

 f (x) = f (a)

h can be positive or negative.

In other words f (x) is continuous at x = a.

3. Converse of the statement in Note 2 is not true in general.

Example 2.12: Show that f (x)= x
2 sin 

1

x
, x ≠ 0 and x = 0

is differentiable at x = 0.

Solution: 
0

( ) (0)
Lim
h

f h f

h→

−

= 

2

0

1
sin 0

Lim
h

h
h

h→

 
− 

 

= 
0

1
Lim sin
h

h
h→

 
 
 

Now,
1

sin
h

 < 1 and so 
1

sinh
h

< | h |

⇒
0

1
Lim sin
h

h
h→

≤ 
0

Lim
h→

 | h | = 0

Hence,
0

( ) (0)
Lim
h

f h f

h→

−
= 0

i.e.,  f (x) is differentiable at x = 0

And                    f ′(0) = 0.
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2.4 DERIVATIVES OF FUNCTIONS

2.4.1 Algebra of Differentiable Functions

We will now prove the following results for two differentiable functions f (x) and

g(x).

(1) [ ( ) ( )]
d

f x g x
dx

±  = f ′ (x) ± g′ (x)

(2) [ ( ) ( )]⋅
d

f x g x
dx

 = f ′(x) g (x) + f (x) g′ (x)

(3) 
( )

( )

d f x

dx g x

 
 
 

 = 
2

( ) ( ) ( ) ( )

[ ( )]

f x g x f x g x

g x

′ ′−

(4) [ ( )]
d

cf x
dx

 = cf′ (x), where c is a constant

      Where, of course, by f ′ (x) mean ( )
d

f x
dx

.

Proof:

(1) [ ( ) ( )]+
d

f x g x
dx

= 
δ 0

[ ( ) ( )] [ ( ) ( )]
Lim

δx

f x x g x x f x g x

x

δ δ

→

+ + + − +

= 
δ 0

( δ ) ( ) ( δ ) ( )
Lim

δ δx

f x x f x g x x g x

x x→

+ − + − 
+ 

 

= 
δ 0 δ 0

( δ ) ( ) ( δ ) ( )
Lim Lim

δ δx x

f x x f x g x x g x

x x→ →

+ − + −
+

= f ′ (x) + g′ (x)

Similarly, it can be shown that

[ ( ) ( )]−
d

f x g x
dx

 = f ′ (x) – g′ (x)

Thus, we have the following rule:

The derivative of the sum (or difference) of two functions is equal to the

sum (or difference) of their derivatives.
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(2) [ ( ) ( )]
d

f x g x
dx

= 
δ 0

( δ ) ( δ ) ( ) ( )
Lim

δx

f x x g x x f x g x

x→

+ + −

= 
[ ] [ ]

δ 0

( δ ) ( δ ) ( ) ( ) ( δ ) – ( )
Lim

δx

g x x f x x f x f x g x x g x

x→

+ + − + +

= 
δ 0

( δ ) ( ) ( δ ) ( )
Lim ( δ ). ( )

δ δx

f x x f x g x x g x
g x x f x

x x→

 + − + −    
+ +    

    

= 
δ 0 δ 0

( δ ) ( )
[ Lim ( δ )] Lim

δx x

f x x f x
g x x

x→ →

+ − 
+  

 

δ 0 δ 0

( δ ) ( )
Lim ( ) Lim

δx x

g x x g x
f x

x→ →

+ −  +      

= g (x) f ′ (x) + f (x) g′(x).

Thus, we have the following rule for the derivative of a product of two

functions:

The derivative of a product of two functions = (the derivative of first

function × second function) + (first function × derivative of second function).

(3)
( )

( )

d f x

dx g x

 
 
 

= 
δ 0

( δ ) ( )

( δ ) ( )
Lim

δx

f x x f x

g x x g x

x→

+
−

+

=
δ 0

( δ ) ( ) ( ) ( δ )
Lim

δ . ( δ ) ( )x

f x x g x f x g x x

x g x x g x→

+ − +

+

= 
δ 0

( )[ ( ) ( )] ( )[ ( ) ( )]
Lim

. ( ) ( )x

g x f x x f x f x g x x g x

x g x x g x→

+ δ − − + δ −

δ + δ

= 
0 0

1 1 ( )[ ( ) ( )]
[ Lim ] Lim

( ) ( )x x

g x f x x f x

g x x g x xδ → δ →

 + δ −
⋅ 

+ δ δ

δ 0

( )[ ( ) ( )]
Lim
x

f x g x x g x

x→

+ δ − 
− δ 

= 
2

1
[ ( ) ( ) ( ) ( )]

[ ( )]
g x f x f x g x

g x

⋅ ′ − ′

= 
f x g x f x g x

g x

′ − ′( ) ( ) ( ) ( )

[ ( )]2
.

The corresponding rule is stated as under:

The derivative of quotient of two functions=

2

( ) – ( )

( )

Derivative of  Numerator × Denominator Numerator × Derivative of  Denominator

Denominator
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(4) 
d

dx
cf x[ ( )]  = 

0

( ) ( )
Lim
x

cf x x cf x

xδ →

+ δ −

δ

 = 
0

( ) ( )
Lim
x

f x x f x
c

xδ →

+ δ − 
 δ 

 = cf ′(x).

The derivative of a constant function is equal to the constant multi-

plied by the derivative of the function.

2.4.2 Differential Coefficients of Standard Functions

 I. ( )nd
x

dx
 = nxn–1

Proof: Let, y = xn

Then, (y + δy) = (x + δx)n

⇒ δy = (x + δx)n – y = (x + δx)n – x
n

= x
x

x

n

n

1 1+
F
HG
I
KJ −

L
N
M
M

O
Q
P
P

δ

= x n
x

x

n n x

x

n 1
1

2
1

2

+
F
HG
I
KJ +

− F
HG
I
KJ + −

L
N
M
M

O
Q
P
P

δ δ( )

!
...

= 
1 2 2( 1)
( ) ( ) ...

2!

− −−
δ + δ +n nn n

nx x x x

δ

δ

y

x
= nx

n–1 + terms containing powers of δx

⇒
0

Lim
x

y

xδ →

δ

δ
= nx

n–1

Hence,
dy

dx
= nx

n–1.

II. (i) ( )xd
a

dx
 = ax loge a

    (ii) ( )
xd

e
dx

 = ex

Proof: (i) Let, y = ax

then, y + δy = ax+δx

⇒ δy = ax+δx
 – a

x = a
x(aδx –1)

⇒
δ

δ

y

x
= 

a a

x

x x( )δ

δ

− 1

⇒
dy

dx
= 

0
Lim
x

y

xδ →

δ

δ
 = 

0

1
Lim

x
x

x

a
a

x

δ

δ →

 −
  δ 

= 

2 2

0

( ) (log )
1 (log ) ... 1

2
Lim

x

x

x a
x a

a
xδ →

 δ
+ δ + + − 

  

δ

= ( )
0

Lim log terms containing x

x

a a x
δ →

+ δ

= ax log a = ax log
e
a

proves the first part.



Differentiation

NOTES

Self-Instructional Material 115

(ii) Since log
e
 e = 1, it follows from result (i) that 

d

dx
e

x  = ex
.

III. loge

d
x

dx
 = 

1

x

Proof: Let, y = log x

⇒ y + δy = log (x + δx)

⇒ δy = log (x + δx) – log x = log
x x

x

+F
HG

I
KJ

δ

⇒
δ

δ

y

x
= 

log 1 +
F
HG

I
KJ

δ

δ

x

x

x

= 
1

1
x

x

x

x

x
⋅ +

F
HG

I
KJδ

δ
log  = 

1
1

x

x

x

x x

log

/

+
F
HG

I
KJ

δ
δ

⇒
0

Lim
x

y

xδ →

δ

δ
= 

/

0

1
Lim log 1

x x

e
x

x

x x

δ

δ →

δ 
+ 

 

= 
1

x
eelog  = 

1

x

as Lim
n → ∞

n

n
+
F
HG
I
KJ1

1
= e and log

e
e = 1

Hence,
dy

dx
= 

1

x

IV. (sin )
d

x
dx

 = cos x

Proof: Now, y = sin x ⇒ y + δy = sin (x + δx)

⇒ δy = sin (x + δx) – sin x = 2
2 2

cos sinx
x x

+
F
HG

I
KJ

δ δ

⇒
y

x

δ

δ
= 

2
2 2

cos sinx
x x

x

+
L
NM

O
QP

δ δ

δ
 = cos

sin

x
x

x

x
+
F
HG

I
KJ ⋅
F

H
G
GG

I

K
J
JJ

δ
δ

δ2

2

2

⇒
0

Lim
x

y

xδ →

δ

δ
= 

0 0

sin
2Lim cos Lim

2

2

x x

x

x
x

xδ → δ →

δ 
  δ  

+     δ    
  

= ( )
0

sin
2cos Lim

2

x

x

x
xδ →

δ 
 
 δ 
  

 = (cos x)(1) = cos x

⇒
dy

dx
= cos x.
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 V.  (cos )
d

x
dx

 = – sin x [The proof is similar to that of (IV).]

Notes:

1. The technique employed in the proofs of (I) to (IV) above is known as

‘ab initio’ technique. We have utilized (apart from simple formulas of

Algebra and Trigonometry) the definition of differential coefficient only.

We have nowhere used the algebra of differentiable functions.

2. In (VI) to (XII) we shall utilize the algebra of differentiable functions.

VI.  ( )
d

c
dx

 = 0, where c is a constant.

Proof: Let, y = c = cx
0.

Then,
dy

dx
= c

dx

dx

0F
HG
I
KJ  = c(0.x0–1) = 0.

VII. (tan )
d

x
dx

 = sec2 x

Proof: Let, y = tan x = 
sin

cos

x

x

dy

dx
= 

d

dx
x x x

d

dx
x

x

(sin ) cos sin (cos )

(cos )

−

2

= 2

(cos )(cos ) sin ( sin )

(cos )

x x x x

x

− −

s = 
2 2

2

cos sin

cos

+x x

x

 = 
1
2cos x

 = sec2
x.

VIII. (sec )
d

x
dx

 = sec x tan x

Proof: Let, y = sec x = 
1

cos x

Then,
dy

dx
= 

d

dx
x

d

dx
x

x

( ) cos ( ) (cos )

(cos )

1 1

2

−

= 
( ) (cos ) ( sin )

cos

0
2

x x

x

− −

= 
sin

cos

x

x
2

 = 
sin

cos cos

x

x x
⋅

1
 = tan x sec x.

Before we proceed further, we will introduce hyperbolic functions.

We define hyperbolic sine of x as 
2

−−x x
e e

 and write it as

sin  h x = 
e e

x z− −

2
.
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Hyperbolic cosine of x is defined to be 
2

−+x x
e e

 and is denoted by cos h x.

It can be easily verified that

cos h
2

x – sin h
2

x = 1

Since (cos h θ, sin h θ) satisfies the equation x2 – y2 = 1 of a hyperbola,

these functions are called hyperbolic functions.

In analogy with circular functions (i.e., sin x, cos x, etc.) we define tan h x,

cot h x sec h x and cosec h x.

Thus, by definition, tan h x = 
xh

xh

cos

sin
, cot h x = 

xhtan

1
,

sec h x = 
xhcos

1
 and cosec h x = 

xhsin

1
.

IX. (sin )
d

h x
dx

 = cos h x

Proof: Before proving this result, we say that

( )−xd
e

dx
= – e

–x,

Because,

e
–x = (e–1)x

⇒
( )

−x
d e

dx
= (e–1)x log

e
(e–1) = e

–x(– 1) = – e
–x

Now, let y = sin h x = 
1

( )
2

−−x x
e e

Then,
dy

dx
= 

1
( ) ( )

2

− 
− 

 

x xd d
e e

dx dx

= 
1

[ ( )]
2

−− −x x
e e  = 

1
( )

2

−+x x
e e = cos h x.

X. (cos )
d

 h x
dx

 = sin h x

Proof is similar to that of (IX).

XI. (tan )
d

h x
dx

 = sec h2 x

Proof: Let, y = tan h x = 
sin h

cos h

x

x

dy

dx
= 

d

dx
x x x

d

dx
x

x

(sin h ) cos h (cos h )

(cos h )

−

2

sin h

= 
( )( ) ( ) ( )

2

cos   cos   sin   sin   

cos   

h x h x h x h x

h x

−

= 
cos h sin h

cos h

2 2

2

x x

x

−
 = 

1

cos h
2

x
 = sec h

2
x.
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XII. (sec )
d

 h x
dx

 = – sec h x tan h x

Proof: Let, y = sec h x = 
1

cos h x

dy

dx
= 

d

dx
x

d

dx
x

x

( ) cos h ( ) (cos h )

cos h

1 1

2

−

= 
( )(cos h ) sin h

cos h

0
2

x x

x

−

= −
F
HG
I
KJ
F
HG
I
KJ

sin h

cos h cos h

x

x x

1
 = – tan h x sec h x.

Example 2.13: If y = x
2
 sin x, find 

dy

dx
.

Solution: This is a problem of the type 
d

dx
(uv).

By applying the formula,

dy

dx
= 

d

dx
x x x

d

dx
x( ) sin (sin )2 2+

= 2x sin x + x
2 cos x.

Example 2.14: If y = x
2
 cosec x, find 

dy

dx
.

Solution: We can write y as 
x

x

2

sin

Applying the formula,

y = 
x

x

2

sin

⇒ dy

dx
= 

d

dx
x x x

d

dx
x

x

( ) sin (sin )

sin

2 2

2

−

= 
2

2

2

x x x x

x

sin cos

sin

−
.

2.4.3 Chain Rule of Differentiation

This is the most important and widely used rule for differentiation.

The rule states that:

If y is a differentiable function of z, and z is a differentiable function

of x, then y is a differentiable function of x, i.e.,

dy

dx
= 

dy

dz

dz

dx
⋅ .

Proof: Let y = F(z) and z = f (x).

If δx is change in x and corresponding changes in y and z are δy and δz

respectively, then y + δy = F(z + δz) and z + δz = f (x + δx).

Thus, δy = F(z + δz) – F(z) and δz = f (x + δx) – f (x)
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Now,
δ

δ

y

x
= 

δ

δ

δ

δ

y

z

z

x
⋅

⇒
0

Lim
x

y

xδ →

δ

δ
= 

0 0
Lim Lim
x x

y z

z xδ → δ →

δ δ

δ δ

⇒
dy

dx
= 

0
Lim
z

y dz

z dxδ →

δ 
 

δ 
,

Since δx → 0 implies that δz → 0

= 
dy

dz

dz

dx
⋅ .

Corollary: If y is a differentiable function of x1, x1 is a differentiable

function of x2, ... , x
n–1 is a differentiable function of x, then y is a differentiable

function of x.

And
dy

dx
= 11

1 2

... n

n

dxdxdy

dx dx dx

− .

Proof: Apply induction on n.

Example 2.15: Find the differential coefficient of sin log x with respect to x.

Solution: Put z = log x, then,  y = sin z

Now,
dy

dx
= 

dy

dz

dz

dx
⋅  = cos z

x
⋅

1
 = 

1

x
xcos (log ).

Example 2.16: Find the differential coefficient of (i) esin x
2
 (ii) log sin x

2
 with

respect to x.

Solution: (i) Put x
2 = y, sin x

2 = z and u = e
sin x

2

Then, u = e
z, z = sin y and y = x

2

By chain rule,

du

dx
= 

du

dz

dz

dy

dy

dx

= ez cos y 2x = esin y cos y 2x = 2xe
sin x

2
 cos x

2.

(ii) Let, u = x2

v = sin x
2 = sin u

Then, y = log sin x
2 = log sin u = log v

So,
du

dx
= 2x, 

dv

du
 = cos u and 

dy

dv
 = 

1

v

Then,
dy

dx
= 

dy

dv

dv

du

du

dx
⋅ ⋅

= 
1

2
v

u x⋅ ⋅cos

= 
1

2
sin

cos
u

u x⋅  = 2x cot u = 2x cot x
2.

Note: After some practice we can use the chain rule, without actually going

through the substitutions. For example,

If y = log (sin x
2), then 

dy

dx
 = 

1
2

2

2

sin
cos

x

x x⋅  = 2x cot x
2.
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Note that we have first differentiated log function according to the formula

d

dt
t(log )  = 

1

t
. Since, here we have log (sin x

2), so the first term on differentiation

is 
1

2
sin x

.

Now, consider sin x
2 and differentiate it according to the formula 

d

du
u(sin )

= cos u. Thus, the second term is cos x
2.

Finally, we differentiated x2 with respect to x, so, the third term is 2x.

Then, we multiplied all these three terms to get the answer 2x cot x
2. We

will illustrate this quick method by few more examples.

Example 2.17: Find 
dy

dx
, when y = 

3(2 3)x
e

+ .

Solution: Since,
d e

dt

t( )
= et and 

du

du

3

 = 3u
2

And
d v

dv

( )2
= 2

We get,
dy

dx
= 

2
(2 3) 23(2 3) (2.1 0)x

e x
+ ⋅ + ⋅ + = 6 2 3 2 2 3

2

( ) ( )
x e

x+ +

Example 2.18: Differentiate y = log [sin (3x
2
 + 5)] with respect to x.

Solution:
dy

dx
= 

1

3 5
3 5 6

2

2

sin ( )
cos ( )

x

x x

+
+ = 6x cot (3x

2 + 5).

Example 2.19: Differentiate y = tan2 ( 3x + ).

Solution:
dy

dx
= 2 3 3

1

2

2tan ( ) sec ( )x x

x

+ ⋅ + ⋅  = 
tan ( ) sec ( )x x

x

+ +3 32

.

CHECK YOUR PROGRESS

1. Find out the limit of 
2

1

1

x

x

−

−
 as x → 1.

2. Find 
dy

dx
 and 

3x

dy

dx =

 
 
 

 for y = x3.

3. When is a function f (x) differentiable at x = a?

4. Differentiate following two functions with respect to x :

3x
2 – 6x + 1 and (2x

2 + 5x – 7)5/2

5. How will you calculate the derivative of a product of two functions?

6. What do you understand by the chain rule of differentiation?
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2.5 DERIVATIVES: TANGENT AND NORMAL

Figure 2.1 shows the tangent and normal of function y= f(x).

Let P (x′, y′) be any point on the curve y = f(x). Equation of any line through

(x′, y′) is

y – y′ = m(x – x′)

In case this line is tangent at P, its slope must be equal to the value of 
dy

dx
 at

(x′, y′).

Let us denote the value of 
dy

dx
 at (x′, y′) by 

dy

dx

′ 
 
 

Thus, m =
dy

dx

′ 
 
 

Hence, the equation of tangent at (x′, y′) of y = f(x) is given by

y – y′ =
dy

dx

′ 
 
 

(x – x′)

Sometimes this formula is written as

Y – y′ =
dy

dx

 
 
 

(X – x),

Where, X and Y are current coordinates and (x, y) is the given point (i.e., the

point of contact).

A normal at a point P of a plane curve y = f(x) is a line through P in the plane

of curve, perpendicular to the tangent there at P.

So, if PT is tangent to a curve y = f(x) at a point P, and if PN is perpendicular

to PT, then PN is normal to the curve at P.

The equation of normal at P (x′, y′) is, therefore,

y – y′ = 
1

dy

dx

 ′
 
 

(x – x′)
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O

Y

N

P

X

y = ( )f x

T

Figure 2.1  Tangent and Normal of y = f(x)

Or, y – y′
1

dy

dx

 ′
 
 

(x – x′) = 0

Note: As in the case of tangent, if we take X and Y to be current coordinates and

P as the point (x, y) the equation of normal at P can be written as

(Y – y′)
dy

dx

 
 
 

+ (X – x) = 0

Example 2.20: Find the equation tangent at (x – y′) on the ellipse

2 2

2 2

x y

a b
+ = 1

Solution:
2 2

2 2

x y

a b
+ = 1

⇒ 2 2

2 2
.

x y dy

a b dx
+ = 0

⇒
dy

dx
=

2

2
–

b x

a y

⇒
dy

dx

 
 
 

′
=

2

2
–

b x

a y

′

′

The equation of tangent at (x′, y′) is therefore,

y – y′ = –
dy

dx

 
 
 

′
.
 
(x – x′)
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Or, y – y′ =
2

2
–

b x

a y

′

′

 
(x – x′)

⇒ a2 yy′ – a2 y′2 = –b2 xx′ + b2x′2

⇒ b2 xx′ – a2 yy′ = b2 x′2 + a2y′2

⇒ 2 2

xx yy

a b

′ ′
+ = 2 2

x y

a b

2 2′ ′
+

= 1, since (x′ – y′) lies on the ellipse.

Example 2.21: Find the equation of normal at a point (x′ – y′) on the curve

y = a log sin x.

Solution: Here,
dy

dx
= a 

1

sin x
cos x = a cot x

⇒
dy

dx

 
 
 

′
= a cot x′

So, the normal has equation

(y – y′) a cos x′ + (x – x′) = 0

i.e.,

a(y – y′) a cos x′ + (x – x′) sin x2 = 0

Example 2.22: Find the equation of tangent at a point (2, 2) on the curve

y2= 2x.

Solution: Differentiating y2 = 2x with respect to x, we get

2
dy

y
dx

= 2

⇒
dy

dx
=

1

y

So, 
dy

dx
at the point (2, 2) is equal to 

1

2
.

i.e.,
dy

dx

 
 
 

′
=

1

2

Hence, the equation of tangent to y2 = 2x at (2, 2) is

y – y′ =
dy

dx

 
 
 

′ 
(x – x′)

i.e., y – 2 =
1

2
(x – 2)

Or, 2y – 4 = (x – 2)

⇒ x – 2y + 2 = 0
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Example 2.23: Find the equation of normal at a point 
4

3,
3

 
 
 

 on xy = 4.

Solution: Differentiating xy = 4 with respect to x, we get 
dy

y + x
dx

 = 0

⇒
dy

dx
=

y
–

x

So,
dy

dx
 at 

4
3,

3

 
 
 

is equal to =

4
–

43 –
3 9

= .

Hence, the equation of normal at 
4

3,
3

 
 
 

is

( )
4 4

– – – 3
3 9

y x
   

+   
   

= 0

Or, ( )
16

–4 9 3
3

y x
 

+ + − 
 

= 0

Or, –12y + 16 + 27x – 81 = 0

Or, 27x – 12y – 65 = 0.

Subtangent and Subnormal

Figure 2.2. shows the subtangent and subnormal of y = f(x). As shown in the

figure, let PT and PN respectively be the tangent and the normal at a point P of the

curve y = f(x).

PM is perpendicular from P on x-axis. Let the tangent and normal at P meet

the x-axis at K and L respectively.

Length PK is called the length of tangent at P and length PL is called the length

of normal at P.

O

Y

N
P

X

T

K M L

ψ

ψ

Figure 2.2  Subtangent and Subnormal of y = y(x)
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Further, KM, i.e., the projection of KP on x-axis is called subtangent at P and

LM, the projection of PL on x-axis is called the subnormal at P.

Suppose that (x′, y′) are the coordinates of P, then if ψ is the angle TKL,

dy

dx

 
 
 

= tan ψ

– – –
2 2 2

M PL M PL
π π π 

∠ = ∠ = ψ = ψ 
 

So, subtangent at P = KM = PM 
KM

PM
 = y′ cot ψ

= y′ 
1

dy

dx

 ′
 
 

=
y

dy

dx

′

 ′
 
 

Whereas, subnormal at P = LM = PM. 
LM

PM
= y2 tan ψ

= y′ 
dy

dx

  ′
 
 

The length of tangent at  P = PK will be

= 2 2
PM KM+

= ( )

2

2

dy

dx

y
y

 ′
′ +  

′  

=

2

1
y dy

dy dx

dx

  ′ +   ′   
 
 

=

2

1
y dy

dy dx

dx

′    ′+    ′   
 
 

Also, the length of normal at  P = PL will be

= 2 2
PM LM+

=

2

2 dy
y y

dx

′  
′ + ′  

  

= y′ 
2

1
dy

dx

′  
+   
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Example 2.24: Prove that for the parabola y2 = 4ax, subtangent at any point is

twice its abscissa and subnormal is constant.

Solution: Let (x′, y′) be any point on y′2 = 4ax.

So, y′2 = 4ax′     ...(1)

Differentiating, we get

2y 
dy

dx
= 4a ⇒  

2dy a

dx y
=

⇒
dy

dx

 ′
 
 

=
2a

y′

Hence, the subtangent at (x′, y′) is

y y

dy a

dx y

′ ′
=

′   2
   

′   

=
2

y

a

′

=
4

2

ax

a

′
, by Equation (1)

= 2x′

= twice the abscissae of the point P.

Also, the subnormal at P is equal to y′ 
dy

dx

 ′
 
 

= y′.
2a

y′
 = 2a, a constant.

Example 2.25: Find the lengths of tangent and normal at any point (x′, y′) of the

curve y = 
2

a

( )/ – /x a x a
e e+ .

Solution: Here,  y  =
2

a

( )/ – /x a x a
e e+

= a cosh 
x

a

⇒
dy

dx
=

1
sin

x
a h

a a

 
 
 

= sinh 
x

a

This gives that
dy

dx

  ′
 
 

= sinh 
x

a

′
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Then, the length of the tangent at (x′, y′) is 

2

1
y dy

dy dx

dx

′   ′+    ′   
 
 

= 

2
cos 1 sin

sin

x x
a h h

a a

x
h

a

′ ′
+

′

As (x′, y′) lies on the given curve.

= 

cos

cos

sin

x
a h

xa
h

x a
h

a

′
′

′

= a cos
x

h
a

′
cot

x
h

a

′

Also, the length of normal at (x′, y′) is 

2

1
dy

y
dx

   ′′ +   
  

= cos 1 sin 2x x
a h h

a a

′ ′ 
+ 

 

= 
2cos

x
a h

a

′

2.6 DIFFERENTIATION OF IMPLICIT FUNCTIONS

AND PARAMETRIC FORMS

2.6.1 Parametric Differentiation

When x and y are separately given as functions of a single variable t (called

a parameter), then you should first evaluate 
dx

dt
 and 

dy

dt
 and then use chain

formula 
dy

dt
 = 

dy

dx

dx

dt
, to obtain

dy

dx
=

dy

dt

dx

dt

The equations x = F (t) and y = G(t) are called parametric equations.
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Example 2.26: Let x = a (cos t + log tan
t

2
) and y = a sin t, find 

dy

dx
.

Solution:
dx

dt
= 21 1

sin sec
tan /2 2 2

 
− + ⋅ 
 

t
a t

t

=
1

sin
2 sin /2 cos /2

 
− + 
 

a t
t t

=
1

sin
sin

 
− + 
 

a t
t

=
a t

t

( sin )

sin

1 2−
 = 

a t

t

cos

sin

2

 and 
dy

dt
 = a cos t

Hence,
dy

dx
=

dy

dt

dx

dt

 = 
2

cos

( cos /sin )

a t

a t t
 = 

sin

cos

t

t
 = tan t.

Example 2.27: Determine 
dy

dx
, where x=a (1 + sin θ) and y = a(1 – cos θ).

Solution:
dx

dθ
=a (1 + cos θ) = 2

2

2
a cos

θ

Also,
dy

dθ
=a sin θ = 2

2 2
a sin cos

θ θ

So,
dy

dx
=

dy

d

dx

d

θ

θ

 = 
sin /2

cos /2

θ

θ
 = tan

θ

2

2.6.2 Logarithmic Differentiation

Whenever you have a function which is either a product or quotient of

functions whose differential coefficients are known or whose variables occur

in powers, you take the help of logarithms to differentiate. This makes the

task of finding differential coefficients much easier than with the usual method.

This technique is illustrated below with the help of examples.

Example 2.28: Prove that 
d

dx
x

x
( )  = x

x(1 + log x)

Solution: Let, y = x
x

Then, log y = x log x

⇒ d

dx
y(log ) = ( ) log1

1
x x

x
+
F
HG
I
KJ  = 1 + log x

⇒
d

dy
y

dy

dx
(log ) = 1 + log x

⇒
1

y

dy

dx
= 1 + log x
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⇒ dy

dx
= y(1 + log x) = x

x (1 + log x)

Note: Since log e = 1, the above result can also be written as,

( )xd
x

dx
= x

x (log ex).

Example 2.29:

     (i) Differentiate y = x
2(x + 1)(x3

 + 3x + 1) with respect to x.

(ii) If xm
y

n
 = (x + y)m + n, prove that 

dy

dx
 = 

y

x
.

Solution:

    (i) y = x
2(x + 1)(x3 + 3x + 1)

⇒ log y = 2 log x + log (x + 1) + log (x3 + 3x + 1)

⇒
1

y

dy

dx
=

2 1

1

3 3

3 1

2

3x x

x

x x

+
+

+
+

+ +

⇒
dy

dx
= y

x x

x

x x

2 1

1

3 3

3 1

2

3
+

+
+

+

+ +

F
HG

I
KJ

= x x x x
x x

x

x x

2 3
2

3
1 3 1

1

1

3 1

3 1
( )( )

( )
+ + +

2
+

+
+

+

+ +

L
N
MM

O
Q
PP

(ii) x
m

y
n = (x + y)m + n

⇒ m log x + n log y = (m + n) log (x + y)

⇒
m

x

n

y

dy

dx
+  = 

m n

x y

dy

dx

+

+

F
HG
I
KJ ⋅ +
F
HG
I
KJ1

⇒ −
+

+
+

F
HG

I
KJ

m n

x y

n

y

dy

dx
 = 

m n

x y

m

x

+

+
−

⇒
− − + +

+

L
NM

O
QP

my ny nx ny

y x y

dy

dx( )
 = 

mx nx mx my

x x y

+ − −

+( )

⇒
( )

( )

− +

+

L
NM

O
QP

my nx

y x y

dy

dx
 = 

nx my

x x y

−

+( )

⇒ dy

dx
 = 

y

x
.

Example 2.30:

    (i) If xy
 = e

x–y, show that

dy

dx
 = 

2

log

(1 log )

x

+ x

(ii) Find 
dy

dx
 if y = x

e
x

.

Solution:

     (i) Given, x
y = e

x–y

⇒ y log x = (x – y) log e = x – y
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⇒ y(1 + log x) = x

⇒ y =
x

x1 + log

⇒
dy

dx
=

( )( log )

( log )

1 1

1 2

+ −
1F
HG
I
KJ

+

x x
x

x

=
1 1

1 2

+ −

+

log

( log )

x

x
 = 

log

( log )

x

x1 2+

(ii) Given y = x
e

x

log y = e
x log x

⇒
1

y

dy

dx
= e

x log x + ex 
1

x

⇒
dy

dx
= y e x

e

x

x

x

log +
F
HG

I
KJ

= x e x
e

x

e x

x
x

log +
F
HG

I
KJ

= ( 1)log
x x

e x x e
x e x e x

−
+

Differentiation of One Function with Respect to Another Function and

the Substitution Method

Parametric differentiation is also applied in differentiating one function with

respect to another function, x being treated as a parameter. Sometimes a

proper substitution makes the solution of such problems quite easy.

Example 2.31:

     (i) Differentiate x with respect to x
3
.

(ii) Differentiate 1

2

2
tan

1

x

x

−

−
 with respect to x.

Solution:

    (i) Let y = x and z = x
3

We have to evaluate 
dy

dz
.

Now,
dy

dx
= 1 and

dz

dx
 = 3x

2

So,
dy

dz
=

dy

dx

dz

dx

 = 
1

3 2
x

(ii) Let, y = tan−

−

F
HG
I
KJ

1

2

2

1

x

x

Putting, x = tan θ, we find that
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y = tan
tan

tan

−

−

F
HG

I
KJ

1

2

2

1

θ

θ

= tan– 1 (tan 2θ) = 2θ = 2 tan– 1
x

So,
dy

dx
= 2

1

1
2+ x

 = 
2

1
2+ x

.

Example 2.32: Differentiate sin x with respect to log x.

Solution: Let y = sin x and z = log x

Then,
dy

dx
= cos x and

dz

dx
 = 

1

x

Imply that,
dy

dz
=

dy

dx

dz

dx

 = 
cos x

x

1
 = x cos x.

Example 2.33: Differentiate 

2
1 1 1

tan
x

x

−
 + − 
 
 

with respect to tan–1
x.

Solution: Let, y = tan− + −F

H
GG

I

K
JJ

1
21 1x

x
 and z = tan–1

x

Then,

dy

dx
= 

2

2

2 2

1
2 ( 1 1)

2 11
.

1 1
1

x x x

x

x
x

x

2

 
  − + −
 + 

 + − +
 
 

=
x

x x x

x x x

x x

2

2 2 2

2 2 2

2 21 1 2 1

1 1

1+ + + − +
⋅

− + − +

+

( )

=
1

2 1 1

1 1

12 2

2

2( )+ − +

+ −

+x x

x

x

=
1

2 1 1 1

1 1

12 2

2

2+ + −

+ −

+x x

x

x( )
 = 

1

2 1 2( )+ x

And
dz

dx
=

1

1 2+ x

So,
dy

dz
=

dy

dx

dz

dx

 = 
1

2

Aliter: z = tan– 1
x ⇒ x = tan z
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So, y =
2

1 1 tan 1
tan

tan

z

z

−
 + −
 
 
 

= tan
sec

tan

− −L
NM

O
QP

1 1z

z

= tan
cos

sin

− −L
NM

O
QP

1 1 z

z

=
2

1 2 sin /2
tan

2 sin /2 cos /2

z

z z

−
 
 
  

 = tan– 1 (tan z/2) = z/2

So,
dy

dz
=

1

2

Differentiation ‘ab initio’ or by First Principle

Earlier we discussed how to differentiate some standard functions starting

from the definition. Here, we have more examples to illustrate the techniques.

Example 2.34: Differentiate cos x  with respect to x by first principle.

Solution: Let y = cos x .

If δx changes in x, then the corresponding change δy in y is given by

y + δy = cos ( )x x+ δ

So, δy = cos ( ) cosx x x+ −δ

Or,
δ

δ

y

x
=

cos ( ) cosx x x

x

+ −δ

δ

=
cos ( ) cos

[ cos ( ) cos ]

x x x

x x x x

+ −

+ +

δ

δ δ

=

2
2 2

sin sin

[ cos ( ) cos ]

−F
HG
I
KJ +
F
HG

I
KJ

+ +

δ δ

δ δ

x
x

x

x x x x

Thus,
dy

dx
=

0
Lim
x

y

xδ →

δ

δ
 = 

0

2 sin
sin2Lim .

cos cosx

x

x

x x xδ →

δ 
− 
 

δ +  
 

=
0

sin
sin 2Lim

2 cos

2

x

x

x

xx δ →

δ 
 

−  
δ  

 

=
0

sin
sin 2as Lim

2 cos

2

x

x

x

xx δ →

δ 
 

−  
δ  

 

 = 1.
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Example 2.35: Differentiate e
x ab initio.

Solution: Let y = e
x  and let δx be the change in x, corresponding to which

δy is the change in y.

Then, y + δy = e
x x+ δ

⇒ δy = e e
x x x+

−
δ

⇒ δ

δ

y

x
=

( 1)
x x xx

e e

x

+ δ −
−

δ

=
1

x x x

x
x x xe

e
xx x x

δ δ

δδ

+ −   + −−
     + −   

= e

x x x
x x x

x x x

x

1
2

1

2

+ + − +
+ −

+ −
L
N
M
M

O
Q
P
P

+ −

( )
( )

!
...δ

δ

δ
 

x x x

x

 + δ −
 

δ  

= e
x x x

x
x

x

x

x 1
2

1 1

1 2

+
+ −

+
L
N
MM

O
Q
PP

+
F
HG
I
KJ −

L
N
MM

O
Q
PP( )

!
...

/

δ

δ

δ

⇒
0

Lim
x

y

xδ →

δ

δ
= 

2

0

1 1
1

1 2 2
1 ... 1

2 2!
( ) Limx

x

x x

x x
e x

xδ →

  
−  δ δ   + + + − 

  
 δ
 
 
  

=
20

1 1 1
( ) Lim ...

2 8

x

x

x
e x

x xδ →

δ 
− + 

 

=
e x

x

x

2
 = 

x

e
x

2

1

Example 2.36: Starting from definition find the derivative of tan (2x + 3).

Solution: Let y = tan (2x + 3)

Then, y + δy = tan (2x + 2δx + 3)

⇒ δy = tan (2x + 2δx + 3) – tan (2x + 3)

= 
sin (2 2δ 3) sin (2 3)

cos (2 2δ 3) cos (2 3)

x x x

x x x

+ + +
−

+ + +

=

                    
sin (2 2δ 3)cos(2 3) sin (2 3)cos(2 2δ 3)

cos(2 2δ 3)cos(2 3)

x x x x x x

x x x

+ + + − + + +

+ + +

=
sin (2δ )

cos (2 2δ 3) cos(2 3)

x

x x x+ + +
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⇒
δ

δ

y

x
=

sin (2δ ) 1

δ cos (2 3) cos (2 2δ 3)

x

x x x x
⋅

+ + +

⇒
y

x

δ

δ
= 20

sin (2 ) 1
2 Lim

2 cos (2 3)x

x

x xδ →

δ 
 δ + 

= 2 sec2 (2x + 3) as 
0

sin (2 )
Lim

2x

x

xδ →

δ

δ
 = 1.

2.6.3 Successive Differentiation

Let y = f (x), then 
dy

dx
 is again a function, say,, g(x) of x. We can find 

( )dg x

dx
.

This is called second deriative of y with respect to x and is denoted by 
d y

dx

2

2

or by y
2
.

In similar fashion we can define 
d y

dx

d y

dx

3

3

4

4
, ,

d y

d x

n

n
...,  for any positive integer

n.

Note: Sometimes y(n) or Dn(y) are also used in place of 
n

n

d y

d x
or y

n
.

The process of differentiating a function more than once is called successive

differentiation.

Example 2.37: Differentiate x
3
 + 5x

2
 – 7x + 2 four times.

Solution: Let, y = x
3 + 5x

2 – 7x + 2

then, y
1

= 3x
2 + 10x – 7

y
2

= 6x + 10

y
3

= 6 and y
4
 = 0.

Some Standard Formulas for the nth Derivative

I. y = (ax + b)m

Here, y
1

= m (ax + b)m–1
a = ma(ax + b)m–1

y
2

= ma (m – 1)(ax + b)m–2
a

So, y
2

= m(m – 1)a2(ax + b)m–2

Thus, y
3

= m(m – 1)a2(m – 2)(ax + b)m–3
a

= m(m – 1)(m – 2)a3(ax + b)m–3

Proceeding in this manner, we find that

y
n
 = m(m – 1)(m – 2) ... (m – n + 1)an(ax + b)m–n

Aliter: The above result can also be obtained by the principle of

Mathematical Induction. The result has already been proved true for n = 1.

Suppose it is true for n = k,

i.e., y
k

= m(m – 1)(m – 2) ... (m – k + 1) a
k(ax + b)m–k
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Differentiating once more with respect to x, we get

y
k+1

= m(m – 1)(m – 2) ... (m – k + 1) a
k (m – k)(ax + b)m–k–1

a

= m(m – 1)(m – 2) . . . (m – k + 1) [m – (k + 1) + 1]a
k+1

(ax + b)m–(k+1)

Hence, the result is true for n = k + 1 also. Consequently, the formula

holds true for all positive integral values of n.

Corollary 1: If y = x
m, then

y
n

= m(m – 1) ... (m – n + 1)xm–n
.

Corollary 2: If y = xm and m is a positive integer, then

y
m

= m(m – 1) ... (m – m + 1)x0 = m!

And y
m+1

= 0, y
n
 = 0 ∨− n > m.

Corollary 3: If y = (ax + b)– 1, then

y
n

= (– 1)(– 2) ... (– 1 – n + 1) a
n(ax + b)–1–n

⇒ y
n

= (– 1)n
 n! an(ax + b)– (n+1).

II. y = sin (ax + b)

Here, y
1

= a cos (ax + b)

= sin + +
2

a ax b
π 

 
 

 sin cos
2

π
θ θ

  
+ =  

  
∵

y
2

= a ax b
2

2
cos + +
F
HG

I
KJ

π

= a ax b
2

2 2
sin + + +
F
HG

I
KJ

π π
 = a ax b

2 2
2

sin + +
F
HG

I
KJ

π

y
3

= a ax b
3 2

2
cos + +
F
HG

I
KJ

π

= a ax b
3 2

2 2
sin + + +
F
HG

I
KJ

π π
 = a ax b

3 3

2
sin + +
F
HG

I
KJ

π

Proceeding in this manner, we get

y
n

= sin .
2

n n
a ax b

π 
+ + 

 

Note: All the formulas discussed above can be proved by using the principle

of Mathematical Induction. We have illustrated the technique in alternative

method of formula (I).

Corollary: For y = cos (ax + b)

y
n

= a ax b
nn cos + +

F
HG

I
KJ

π

2
.

Proof: y = cos (ax + b) = sin
2

ax b
π 

+ + 
 

So, y
n

= a ax b
nn sin + + +

F
HG

I
KJ

π π

2 2
 = a ax b

nn cos + +
F
HG

I
KJ

π

2
.
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III. y = eax

Clearly, y
1

= ae
ax

y
2

= a
2
e

ax

y
3

= a
3
e

ax ... and so on, till we get

y
n

= a
n
e

ax
.

IV. y = log (ax + b)

Here, y
1

=
a

ax b+
 = a (ax + b)–1

y
n

=
1

11
( )

n

n

d
y

dx

−

−

= a(– 1)n–1(n – 1)!an–1(ax + b)–1 – (n–1)

By Corollary (3) and (I)

= (– 1)n–1(n – 1)! an(ax + b)–n

=
( ) ( )!

( )

− −

+

−1 11n n

n

n a

ax b
.

V. y = eax cos (bx + c)

In this case,

 y
1

= ae
ax cos (bx + c) – be

ax sin (bx + c)

= e
ax [γ cos ϕ cos (bx + c) – γ sin ϕ sin (bx + c)]

Where, a = γ cos ϕ and b = γ sin ϕ

So, y
1

= γ e
ax cos (bx + c + ϕ)

Again, y
2

= γ [ae
ax cos (bx + c + ϕ) – be

ax sin (bx + c + ϕ)]

= γ2
e

ax[cos ϕ cos (bx + c + ϕ) – sin ϕ sin (bx + c

   + ϕ)]

= γ2
e

ax cos (bx + c + 2ϕ)

Proceeding in this manner, we get

y
n

= γn
e

ax cos (bx + c + nϕ)

Where, tan ϕ =
b

a
 and γ = (a2 + b

2)1/2

[∵  a = γ cos ϕ, b = γ sin ϕ ⇒
b

a
 = tan ϕ and a

2 + b
2 = γ2].

Corollary: For y = eax sin (bx + c)

y
n

= γn
e

ax sin (bx + c + nϕ)

Where, ϕ = tan−1 b

a
and γ = (a2 + b

2)1/2

Proof is left as an exercise.

VI. y =
 
 
 

-1
tan

x

a

Now, y
1

=
1

1

1
2

2
+

⋅
x

a

a
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=
a

a x
2 2+

=
a

x ia x ia( )( )+ −
, where i = −1

=
1

2

1 1

i x ia x ia−
−

+

L
NM

O
QP

=
1

2

1 1

i
x ia x ia[( ) ( ) ]− − +− −

⇒ y
n

= D
n–1(y

1
)

= 1 1 ( 1)1
( 1)! ( 1) ( )

2

n n
n x ia

i

− − − − − − −


1 1 ( 1)( 1)! ( 1) ( )n n
n x ia

− − − − − − − +


=
1

( 1) ( 1)!
[( ) ( ) ]

2

n
n nn

x ia x ia
i

−
− −− −

− − +

Put, x = γ cos θ and a = γ sin θ

Then, tan θ =
a

x
 and γ = 

a

sinθ

Thus,        y
n
=

1
( 1) ( 1)!

[ (cos sin )
2

n
n nn

i
i

−
− −− −

γ θ − θ (cos sin ) ]
n n

i
− −− γ θ − θ

     =
1( 1) ( 1)!

[cos sin (cos sin )]
2

n

n

n
n i n n i n

i

−− −
θ + θ − θ − θ

γ

[By De Moivre’s theorem (cos θ + i sin θ)n = cos nθ + i sin nθ for an

integer n.]

=
1( 1) ( 1)! 2 sin

2

n

n

n i n

i

−− − θ

γ

=
1( 1) ( 1)!sin

/sin

n

n n

n n

a

−− − θ

θ

=
1( 1) ( 1)! sin sinn n

n

n n

a

−− − θ ⋅ θ

Where, θ = tan− F
HG
I
KJ

1 a

x

Note: Since tan θ = 
a

x
⇒

x

a
 = cot θ = tan y

We get, θ =
π

2
− y, so the above formula can also be put in the form

y
n

=

1
( 1) ( 1)! sin sin

2 2

n n

n

n n y y

a

− π π   
− − − −   
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To prove De Moivre’s theorem for an integer we proceed as:

For n = 1, (cos θ + i sin θ)1 = cos θ + i sin θ = cos 1θ + i sin 1θ

For n = 2, (cos θ + i sin θ)2 = cos2 θ – sin2 θ + 2i sin θ cos θ

= cos 2θ + i sin 2θ

Proceeding in this manner, we get (cos θ + i sin θ)n = cos nθ + i sin nθ

In case n is negative integer, put n = –m, m > 0

(cos θ + i sin θ)n =
1

(cos sin )θ θ+ i
m

 = 
1

cos sinm i mθ θ+

=
cos sin

cos sin

m i m

m m

θ θ

θ θ

−

+2 2
 = cos mθ – i sin mθ

= cos (– m)θ + i sin (– m)θ = cos nθ + i sin nθ

Note: By y
n
(a) we shall mean the value of y

n
 at x = a.

Thus, for example, if y = sin 3x

4
3

y
π 
 
 

=
4 4

3 sin 3
2

x
 π  

+  
  

 at x = 
3

π

= 81 sin (3x + 2π) at x = 
3

π

= 81 sin 3x at x = 
3

π

= 0

2.7 PARTIAL DIFFERENTIATION

Till now we have been talking about functions of one variable. But there may

be functions of more than one variable. For example,

z = 
xy

x y+
, u = x

2 + y
2 + z

2

are functions of two and three variables, respectively. Another example is,

demand for any good depends not only on the price of the goods, but also

on the income of the individuals and on the price of related goods.

Let z = f (x, y) be function of two variables x and y. x and y can take any

value independent of each other. If you allot a fixed value to one variable, say x,

and second variable y is allowed to vary, then  f (x, y) can be regarded as a

function of single variable y. So, you can talk of its derivative with respect to y,

in the usual sense. We call this partial derivative of z with respect to y, and it is

denoted by the symbol 
∂

∂

z

y
.

Thus, we have

∂

∂

z

y
=

0

( , ) ( , )
Lim
y

f x y y f x y

yδ

δ

δ→

+ −
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Similarly, we define partial derivative of z with respect to x, as the derivative

of z, regarded as a function of x alone. Thus, here y is kept constant and x

is allowed to vary.

So,
∂

∂

z

x
=

0

( , ) ( , )
Lim

x

f x x y f x y

xδ

δ

δ→

+ −
.

Note:
z

x

∂

∂
 is also denoted by z

x
 and

z

y

∂

∂
, by z

y
.

In similar manner, we can define 
∂

∂

2

2

z

x

, 
∂

∂ ∂

2
z

x y
, 

∂

∂ ∂

2
z

y x
, 

∂

∂

2

2

z

y

. Thus, 
∂

∂

2

2

z

x

is

nothing but 
∂

∂

∂

∂

F
HG
I
KJx

z

x
; 

∂

∂ ∂

2
z

x y
 is same as 

∂

∂

∂

∂

F
HG
I
KJx

z

y
, 

∂

∂ ∂

2
z

y x
 = 

∂

∂

∂

∂

F
HG
I
KJy

z

x
 and 

∂

∂

2

2

z

y

= 
∂

∂

∂

∂

F
HG
I
KJy

z

y
. In this manner one can define partial derivatives of higher orders.

Note: In general 
∂

∂ ∂

2
z

x y
 ≠ 

∂

∂ ∂

2
z

y x
, i.e., change of order of differentiation does

not always yield the same answer. There are famous theorems like Young’s

theorem and Schwarz theorem which give sufficient conditions for two derivatives

to be equal. But as far as we are concerned, all the functions that we deal

with in this book are supposed to satisfy the relation 
∂

∂ ∂

2
z

x y
 = 

∂

∂ ∂

2
z

y x
.

Example 2.38: Evaluate 
∂

∂

z

x
 and 

∂

∂

z

y
.

When, z =
x

x y

2

1− +

Solution: z =
x

x y

2

1− +

z

x

∂

∂
=

2 1 1

1

2

2

x x y x
x

x y

x y

( ) ( )

( )

− + −
∂

∂
− +

− +

=
2 2 2 1

1

2 2

2

x xy x x

x y

− + −

− +

( )

( )

=
x xy x

x y

2

2

2 2

1

− +

− +( )
 = 

x x y

x y

( )

( )

− +

− +

2 2

1 2

Again,
∂

∂

z

y
=

∂

∂ − +

F
HG

I
KJy

x

x y

2

1

= x
y

x y
2 11

∂

∂
− + −[( ) ]  = 

2 2( 1) ( )x x y y
y

− ∂
− − + − ∂ 

= – x
2(x – y + 1)– 2(– 1) = 

x

x y

2

2
1( )− +
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Example 2.39: Verify that for z = log (x2
 – y

2).

∂

∂ ∂

2
z

x y
=

∂

∂ ∂

2
z

y x
.

Solution:
∂

∂

z

x
=

∂

∂x
 [log (x2 – y2)] = 

2
2 2

x

x y−

∂

∂ ∂

2
z

y x
= 2 2

2x

y x y

 ∂
  ∂ − 

 = 
2 2 1

2 [( ) ]x x y
y

−∂
−

∂

=
2 2 2 22 ( ) ( )x x y y

y

− ∂
− − − ∂ 

= – 2x(x2 – y
2)– 2(– 2y) = 

+

−

4
2 2 2

xy

x y( )
...(1)

Further,
∂

∂

z

y
=

∂

∂
−

y
x y[log ( )]2 2  = 

−

−

2
2 2

y

x y

∂

∂ ∂

2
z

x y
=

∂

∂
−

−

L
N
MM

O
Q
PPx

y

x y

2
2 2

 = ( ) [( ) ]−
∂

∂
− −2 2 2 1

y
x

x y

= ( ) ( ) ( )− − −
∂

∂

L
NM

O
QP

−2 2 2 2 2
y x y

x
x  = 

4
2 2 2

xy

x y( )−
...(2)

Equations (1) and (2) give the required result.

Example 2.40: Show that 
2

[( ) ]
+∂

+
∂ ∂

x y
x y e

x y
 = (x + y + 2)ex+y.

Solution: ( ) x y
x y e

y

+∂  +
 ∂

= [ ( )]
x y

e e x y
y

∂
+

∂

= e
x[ey(x + y) + ey]

= e
x
e

y(x + y + 1)

2

( )
x y

x y e
x y

+∂  +
 ∂ ∂

=
∂

∂x
[ex

e
y(x + y + 1)]

= [ ( 1)]
y x

e e x y
x

∂
+ +

∂

= e
y[ex(x + y + 1) + e

x]

= e
x
e

y(x + y + 1 + 1)

= e
x+y(x + y + 2)

= (x + y + 2) e
x+y

Example 2.41: If u = log (x2
 + y

2
 + z

2), prove that:

x
u

y z

∂

∂ ∂

2

= y
u

z x

∂

∂ ∂

2

 = z
u

x y

∂

∂ ∂

2

.

Solution: u = log (x2 + y2 + z2)



Differentiation

NOTES

Self-Instructional Material 141

⇒ ∂

∂

u

x
=

d

d x y z

x y z
x y z

x( )
[log ( )]

( )
2 2 2

2 2 2
2 2 2

+ +
+ +

∂ + +

∂

=
1

2
2 2 2

x y z

x

+ +
⋅  = 

2
2 2 2

x

x y z+ +

⇒ ∂

∂ ∂

2
u

z x
=

∂

∂

∂

∂

F
HG
I
KJz

u

x
 = 

2 2 2 2

2
. (2 )

( )
−

+ +

x
z

x y z
 = 

−

+ +

4
2 2 2 2

xz

x y z( )

⇒ y
u

z x

∂

∂ ∂

2

= 
−

+ +

4
2 2 2 2

xyz

x y z( )
...(1)

Again,
∂

∂ ∂

2
u

x y
=

∂

∂ ∂

2
u

y x
 = 

∂

∂

∂

∂

L
NM
O
QPy

u

x

= −
+ +

2
2

2 2 2 2

x

x y z

y

( )
( )  = 

−

+ +

4
2 2 2 2

xy

x y z( )

⇒ z
∂

∂ ∂

2
u

x y
= −

+ +

4
2 2 2 2

xyz

x y z( )
...(2)

Similarly, it can be shown that

x
u

y z

∂

∂ ∂

2

= −
+ +

4
2 2 2 2

xyz

x y z( )
...(3)

Equations (1), (2) and (3) give the required result.

Example 2.42: If u = f (r), where r = x y
2 2+ ,

prove that 
∂

∂
+

∂

∂

2

2

2

2

u

x

u

y

 = f′′ (r) + ( )′
1

f r
r

.

Solution: r = (x2 + y2)1/2

⇒
∂

∂

r

x
=

1

2
22 2 1 2⋅ + ⋅−( ) /

x y x  = 
x

x y
2 2+

 = 
x

r

Similarly,
∂

∂

r

y
=

y

r
.

Now, u = f (r)

⇒
∂

∂

u

x
=

d

dr
u

r

x
( )

∂

∂

⇒ =
′u x

r
 where u′ = 

du

dr
 = f ′(r)

⇒
∂

∂

2

2

u

x

=
u

r

x

r

u

x
u x

x r

′
+

∂ ′

∂
+ ′

∂

∂

F
HG
I
KJ

1

=
u

r

x

r

d

dr
u

r

x
xu

d

dx r

r

x

′
+ ′

∂

∂
+ ′

F
HG
I
KJ

∂

∂
( )

1
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=
u

r

x

r

u
′

+ ′
2

2

xu

r

x

r
′ −

′
2

 where u′′ = 
d u

dr

2

2
 = f ′′(r)

=
2 2

2 3

′ ′′
+ − ′

u x u x
u

r r r
.

In a similar manner, it can be proved that:

∂

∂

2

2

u

y

=
2 2

2 3

′ ′′
+ − ′

u y u y
u

r r r

So,
∂

∂

2

2

u

x

 + 
∂

∂

2

2

u

y

= 2 2 2 2

2 3

2
( ) ( )

′ ′′ ′
+ + − +

u u u
x y x y

r r r

= 2 2

2 3

2 ′ ′′ ′
+ ⋅ − ⋅

u u u
r r

r r r
= 

2 ′ ′
+ ′′ −

u u
u

r r

=
u

u
r

′
′′ + =

1
( ) ( ).′′ + ′f r f r

r

2.8 MAXIMA AND MINIMA OF FUNCTIONS

Definition 1

The point (c, f (c)) is called a maximum point of y = f (x), if (i)  f (c + h) ≤  f (c),

and (ii)  f (c – h) ≤  f (c) for small h ≥ 0. f (c) itself is called a maximum value of

f (x).

Definition 2

The point (d, f (d)) is called a minimum point of y = f (x), if

(i)  f (d +h) ≥  f (d), and

(ii)  f (d – h) ≥  f (d)

for all small h ≥ 0.

f (d) itself is called a minimum value of f (x).

Thus, you observe that points P [c – h, f (c – h)] and Q [c + h, f (c + h)], which

are very near to A, have ordinates less than that of A, whereas the points

R[d – h, f (d – h)], and S [d + h, f (d + h)],

Which are very close to B, have ordinates greater than that of B.
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Figure 2.3 exhibits these maximum and minima points.

O X

Y

P A Q

R S

B

y=f(x)

Figure 2.3 Maxima and Minima

We will now prove that at a maximum or minimum point, the first differential

coefficient with respect to x must vanish (in other words, tangents at a maximum

or minimum point is parallel to x-axis, which is, otherwise, evident from

Figure 2.3).

Let [c, f (c)] be a maximum point and let h ≥ 0 be a small number.

Since f (c – h) ≤  f (c)

We have, f (c – h) – f (c) ≤ 0

⇒
( )  ( )

0
f c h f c

h

− −
≥

−
... (2.3)

Again, f (c + h) ≤  f (c) ⇒ f (c + h) – f (c) ≤ 0

⇒
( )  ( )

0
f c h f c

h

+ −
≤ ... (2.4)

Equation (2.3) implies that
0

( )  ( )
Lim 0,
k

f c k f c

k→

+ −
≥ [put k = –h]

and equation (2.4) gives that
0

( )  ( )
Lim 0
k

f c h f c

k→

+ −
≤ [put k = h]

Thus, 0 ≤ 
0

( )  ( )
Lim 0
k

f c k f c

k→

+ −
≤

⇒
dy

dx

 
 
 

 at x = c is equal to zero.

i.e., f ' (c)  = 0

Again, let [d, f (d)] be a minimum point and let h ≥ 0 be a small number.

Since  f (d – h) ≥  f (d)

we have,  f (d – h) – f (d)  ≥  0
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⇒  
( )  ( )

0
f d h f d

h

− −
≤

−
... (2.5)

Again, f (d + h) ≥  f (d)

⇒
( )  ( )

0
f d h f d

h

+ −
≥ ... (2.6)

Equations (2.5) and (2.6) imply
0

( )  ( )
Lim 0
k

f d k f d

k→

+ −
=

i.e., f ' (d) = 0

Before we proceed to find out the criterion for determining whether a point is

maximum or minimum, we will discuss the increasing and decreasing functions

of x.

A function f(x) is said to be increasing  (decreasing) if

f (x + c) ≥ f (x) ≥ f (x  – c) [ f (x + c) ≤  f (x) ≤  f (x – c)] for all c  ≥ 0.

Theorem 2.1

If  f '(x)  ≥ 0, then f (x) is increasing function of x and if f '(x) ≤ 0, then f(x) is

decreasing function of x.

Proof: f ' (x) ≥ 0 ⇒ 
0

( )  ( )
Lim 0
x

f x x f x

xδ →

+ δ −
≥

δ
... (2.7)

In case δx > 0, put c = δx, then equation (2.7) gives

f(x + c) ≥  f(x)

In case δx < 0, put c = – δx, then equation (2.7) gives

( )  ( )
0

f x c f x

c

− −
≥

−

⇒ f (x – c) – f (x)  ≤ 0

⇒ f (x) ≥  f (x – c)

Hence, f (x + c) ≥  f (x) ≥  f (x – c)

In other words, f (x)  is increasing function of x.

Suppose that f ' (x) ≤ 0

Then,
0

( )  ( )
Lim 0
x

f x x f x

xδ →

+ δ −
≤

δ
... (2.8)

In case δx > 0, put c = δx, then Equation (2.8) gives

f (x + c) – f (c) ≤ 0

i.e., f (x + c)  ≤ f (x)
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If δx < 0, put c = – δx, then Equation (2.8) gives

( )  ( )
0

f x c f x

c

− −
≤

−

⇒ f (x – c) – f (x) ≥ 0

⇒ f (x) ≤ f (x – c)

So, f (x + c) ≤ f (x) ≤ f (x – c)

This means that f (x) is a decreasing function of x.

Notes:

1. A function f(x) is said to be strictly increasing (strictly decreasing) if

f (x + c) > f (x) > f (x – c) [f(x + c) < f (x) < f (x – c)] for all c > 0.

2. It is seen that f(x) is increasing, if f(x) > f(y), whenever x > y, and f(x)

is decreasing, if

x > y ⇒  f(x) < f(y) and conversely.

3. It can be proved as above that a function f(x) is strictly increasing or

strictly decreasing accordingly, if

f '(x) > 0 or f '(x) < 0.

Geometrically, the above theorem means that for an increasing function, tangent at

any point makes acute angle with OX whereas for a decreasing function, tangent

at any point makes an obtuse angle with x-axis. This is shown in Figure 2.4.

Let A be a maximum point (c, f(c)) of a curve y = f(x).

Let P [c – h, f(c – h)] and Q [c + h, f(c + h)] be two points in the vicinity of A

(i.e., h is very small).

ψ < π
2

O X

Y

Figure 2.4 Tangent for an Increasing Function Making an Acute Angle with

X-axis

Figure 2.5(a) shows the tangent of the function making one obtuse angle with

Y-axis. If ψ
1
 and ψ

2
 are inclinations of tangents at P and Q respectively, it is quite

obvious from the Figure 2.5(b), that ψ
1
 is acute and ψ

2
 is obtuse.

Analytically, it is apparent from the fact that function is increasing from P to A and

decreasing from A to Q. So, tanψ
 
decreases as we pass through A (tanψ is +ve

when ψ is acute and it is –ve when ψ is obtuse).



146   Self-Instructional Material

Differentiation

NOTES

Y

 Figure 2.5(a) Tangent of the function          Figure 2.5(b) Inclinations of

making an Obtuse Angle with Y-axis Tangents at P and Q

Thus, 
dy

dx
= tanψ is a decreasing function of x. In other words, 

2

2

d y

dx
≤ 0.

Since tanψ is strictly decreasing function of x, (f(x) is not a constant function), so,
2

2

d y

dx
< 0. Consequently, at a maximum point c (f(c)),

f '' (c) < 0.

Similarly, it can be easily seen that if R [d – h, f(d – h)] and S [d + h, f(d + h)] are

two points in the neighbourhood of a minimum point B[d, f(d)], slopes of tangents

as we pass through B increase. (Here ψ
1
 is obtuse, so tan ψ

1
 < 0 and ψ

2
 is acute,

so tan ψ
2
 > 0).

Therefore, for a minimum point (d, f(d)), 
2

2

d y

dx
> 0,  i.e., f '' (d) >0.

Figure 2.6 shows the slopes of the tangent passing through B.

O X

Y

ψ2
ψ1

R S
B

Figure 2.6 Slopes of the Tangent Passing through B

Notes:

1.  A point (α, β), such that f '(α) = 0, f ''(α) ≠ 0 and f '''(α) ≠ 0 is

called a point of inflexion.
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2. Any point at which 0
dy

dx
=  is called a stationary point. Thus, maxima

and minima are stationary points. A stationary point need not be a

maximum or a minimum point (it could be a point of flexion). Value of

f(x) at a stationary point is called stationary value.

We have the following rule for the determination of maxima and minima,

if they exist, of a function y = f(x).

Step I. Putting 0,
dy

dx
=  calculate the stationary points.

Step II. Compute 
2

2

d y

dx
 at these stationary points.

In case 
2

2
0,

d y

dx
>  the stationary point is a minimum point.

In case 
2

2
0,

d y

dx
< the stationary point is a maximum point.

If 
2

2
0

d y

dx
= , then compute 

3

3
.

d y

dx

If 
3

3
0

d y

dx
≠ , the stationary point is neither a maximum nor a minmum at that point.

If 
3

3
0,

d y

dx
=  find 

4

4
.

d y

dx
 If the fourth derivative is negative at that point, then there is

a maximum and if it is positive then there is a minimum.

Again in case 
4

4
0,

d y

dx
=  find the fifth derivative and proceed as above till we get a

definite answer.

Example 2.43: Find the maximum and minimum values of the expression

x3 – 3x2 – 9x + 27.

Solution: Let y = x3 – 3x2 – 9x + 27

dy

dx
= 3x2 – 6x – 9

For maxima and minima,
dy

dx
= 0

⇒ 3x2 – 6x – 9 = 0

⇒ (x– 3) (x + 1) = 0

⇒ x = –1, 3

Now,
2

2

d y

dx
= 6x – 6
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At x = –1, 
2

2
12 0,

d y

dx

= − <  so x = –1 gives a maximum point of y.

Again, at x = 3, 
2

2
12 0,

d y

dx

= + > x = 3 gives a minimum point of y.

Hence, maximum value of y is [(–1)3 – 3 (–1)2 – 9 (–1) + 27]

= 36 + 1 – 3 = 34

While minimum value of y is 33 – 3(3)2 – 9 (3) + 27

= 54 – 27 – 27 = 0

Example 2.44: Find the maximum and minimum values of the function

8x5 – 15x4 + 10x2.

Solution: Let f(x) = 8x5 – 15x4 + 10x2

⇒ f ′(x) = 40x4 – 60x3 + 20x

For maxima and minima,

f ′(x) = 0 ⇒ x = 0, 1, –
2

1

So, these are the points where there can be a maximum or a minimum

Now, f ′′(x) = 160x3 – 180x2 + 20

Thus, f ′′(0) = 20 > 0 ⇒ There is a minimum at x = 0

Again, f ′′(–
2

1
) = 160 (–

2

1
)3 – 180 (–

2

1
)2 + 20 = –45 < 0

⇒ there is a maximum at x = –
2

1

Since f ′′(1) = 160 – 180 + 20 = 0, we cannot say anything regarding a maximum

or a minimum at x = 1 at this stage. So, we find f ′′′(x).

Now, f ′′′(x) = 480 x2 – 360 x

But, f ′′′(1) = 480 – 360 ≠ 0

⇒ There is neither a maximum nor a minimum at x = 1

Hence, f (–
2

1
) = 

16

21
 is maximum value and f (0) = 0 is minimum value.

Example 2.45: Find out maxima and minima of sin x + cos x, when x lies between

0 and 2π.

Solution: Let y = sin x  + cos x, 0 ≤  x ≤ 2π

For maxima and minima, 
dx

dy
= 0

⇒ cos x – sin x = 0

⇒ tan x = 1
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⇒ x = 
4

π
or 

4

3π
.

Now, 2

2

dx

yd
= – sin x – cos x

At,
2

2

1 1
,

4 2 2

d y
x

dx

π
= = − − = –√2 < 0

And at,
2

2

3 1 1
,

4 2 2

d y
x

dx

π
= = + = √2 > 0

So, x = 
4

π
 gives a maximum and x = 

4

3π
gives a minimum point of given

function.

Example 2.46: Find maxima and minima of

sin x + cos 2 x for 0 ≤ x ≤ π /2.

Solution: Let y = sin x + cos 2x

For maxima and minima 
dx

dy
= 0

⇒ cos x – 2 sin 2x = 0

⇒ cos x(1 – 4 sin x) = 0

⇒ cos x = 0 or sin x = 
4

1

⇒ x = 
2

π
or x = sin–1

4

1

Now, 2

2

dx

yd
=–sin x – 4 cos 2x

=–sin x – 4 (1 – 2 sin2x)

=8 sin2x – sin x – 4

At, x = π/2, 2

2

dx

yd
= 8 – 1 – 4 = 3 > 0

So, x = 
2

π
 gives a minimum point of sin x + cos 2x

At, x = 

2
1

2

1
sin ,

4

d y

dx

−
= 

1 1
8 4

16 4

 
− − 

 

 =
1 1

4
2 4

− −
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 = 
1 17 15

0
2 4 4

− = − <

Consequently, x = sin–1

4

1
 gives  a maximum point of sin x + cos 2x.

Example 2.47: The sum of two numbers is 24. Find the numbers if the sum of

their squares is to be minimum.

Solution: Let x and y be two numbers such that

x + y = 24

Let,     s = x2+ y2 = x2 + (24 – x)2

For maxima and minima, 
dx

ds
= 0

⇒ 2x – 2 (24 – x) = 0

⇒ 2x = 24 ⇒ x = 12

Further,
2

2

d s

dx
= 4 > 0

So, x = 12 and y = 12 give minimum value.

Hence, the required numbers are 12 and 12.

CHECK YOUR PROGRESS

7. What is parametric differentiation?

8. Determine 
dx

dy
 where x = a ( 1 + sin θ) and y = a (1 – cos θ).

9. When do we take help of logarithmic differentiation?

10. What is successive differentiation?

11. Find first four derivatives of y = x3 + 5x2 – 7x +2.

12. What do you understand by partial differentiation?

13. When is a point called maximum and has a maximum value?

14. When is a function f(x) said to be increasing or decreasing?

2.9 SUMMARY

In this unit, you have learned that:

• In mathematics, usually there are two kinds of quantities: constants and

variables.

• A quantity which is liable to vary is called a variable quantity or simply a

variable, and a quantity that retains its value through all mathematical

operations is termed as a constant quantity or a constant.
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• Limits of a function can be evaluated using the expansion method.

• The derivative of the sum (or difference) of two functions is equal to the

sum (or difference) of their derivatives.

• The derivative of a product of two functions = (the derivative of first function

× second function) + (first function × derivative of second function).

• The derivative of a constant function is equal to the constant multiplied by

the derivative of the function.

• The chain rule of differentiation states that if y is a differentiable function of

z, and z is a differentiable function of x, then y is a differentiable function

of x.

• Logarithms are used to find differential coefficients of functions which are

either product or quotient of functions whose differential coefficients are

known, or whose variables occur in powers.

• Parametric differentiation is also applied in differentiating one function with

respect to another function, x being treated as a parameter.

2.10 KEY TERMS

• Derivative: It refers to the instantaneous rate of change of a function.

• Variable: It refers to a quantity that is liable to vary.

• Constant: It refers to a quantity that retains its value through all mathematical

operations.

• Differentiation: It refers to the rate of change of any quantity with respect

to the change in another quantity with which it has a functional relationship.

• Maxima: It refers to the largest value that a function takes in a point either

within a given neighbourhood or on the function domain in its entirety.

• Minima: It refers to the smallest value that a function takes in a point either

within a given neighbourhood or on the function domain in its entirety.

2.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1.
2

1

1
Lim

1x

x

x→

−

−
 = 2.

2. 27.

3. A function f (x) is said to be derivable or differentiable at x = a if its deriva-
tive exists at x = a.
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4. 6x – 6 and 
5

2
4 5 2 5 7

2 3 2
( )( )

/
x x x+ + − .

5. The derivative of a product of two functions = (the derivative of first func-

tion × second function) + (first function × derivative of second function).

6. The chain rule is the most important and widely used rule for differentiation.

The rule states that if y is a differentiable function of z, and z is a

differentiable function of x, then y is a differentiable function of x.

7. When x and y are separately given as functions of a single variable t

(called a parameter), then we first evaluate 
dx

dt
 and 

dy

dt
 and then use

chain formula 
dy

dt
 = 

dy

dx

dx

dt
, to obtain 

dy

dx
=

dy

dt

dx

dt

The equations x = F (t) and y = G(t) are called parametric equations.

8.
dy

dx
=

dy

d

dx

d

θ

θ

 = 
sin /2

cos /2

θ

θ
 = tan

θ

2
.

9. Whenever we have a function which is a product or quotient of functions

whose differential coefficients are known or a function, in which variables

occur in powers, we take the help of logarithms.

10. The process of differentiating a function more than once is called
successive differentiation.

11. Let y = z
3 + 5x

2 – 7x + 2

then, y
1
 = 3x

2 + 10x – 7

y
2
 = 6x + 10

y
3
 = 6 and

y
4
 = 0.

12. Let z = f (x, y) be function of two variables x and y. x and y can take any

value independently of each other. If we allot a fixed value to one variable,

say x, and second variable y is allowed to vary, f (x, y) can be regarded

as a function of single variable y. So we can talk of its derivative with

respect to y, in the usual sense. We call this partial derivative of z with

respect to y, and denote it by the symbol 
∂

∂

z

y
.
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Thus, we have,

∂

∂

z

y
 = 

0

( , ) ( , )
Lim
y

f x y y f x y

yδ

δ

δ→

+ −

Similarly, we define partial derivative of z with respect to x, as the

derivative of z, regarded as a function of x alone. Thus, here y is kept

constant and x is allowed to vary.

So, 
∂

∂

z

x
 = 

0

( , ) ( , )
Lim

x

f x x y f x y

xδ

δ

δ→

+ −

In similar manner, we can define 
∂

∂

2

2

z

x

, 
∂

∂ ∂

2
z

x y
, 

∂

∂ ∂

2
z

y x
, 

∂

∂

2

2

z

y

. Thus, 
∂

∂

2

2

z

x

is

nothing but 
∂

∂

∂

∂

F
HG
I
KJx

z

x
; 

∂

∂ ∂

2
z

x y
 is same as 

∂

∂

∂

∂

F
HG
I
KJx

z

y
, 

∂

∂ ∂

2
z

y x
 = 

∂

∂

∂

∂

F
HG
I
KJy

z

x
 and

∂

∂

2

2

z

y

 = 
∂

∂

∂

∂

F
HG
I
KJy

z

y
. In this manner one can define partial derivatives of

higher orders.

13. The point (c, f (c)) is called a maximum point of y = f (x), if (i) f

(c + h) ≤ f (c), and (ii)  f (c – h) ≤  f (c) for small h ≥ 0. f (c) itself

is called a maximum value of f (x).

14. A function f(x) is said to be increasing  (decreasing) if f (x + c) ≥ f (x) ≥

f (x  – c) [ f (x + c) ≤  f (x) ≤  f (x – c)] for all c  ≥ 0.

2.12 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Evaluate 
0

Sin 3
Lim

Sin 5x

x

x→
.

2. Differentiate with respect to x; y = sin3 x.

3. Differentiate with respect to x; y = log (sin x).

4. Find derivative y = log x from first principle (ab initio).

5. Find fifth derivative of y = x4.

6. Find maximum and minimum value of y = sin x + cos x.

7. Find derivative of y = log sin (2x + 3).

8. Differentiate sin x with respect to cos x.
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Long-Answer Questions

1. Evaluate the following limits:

0

1
Lim (1 )
x

x
x→

+ , 
0

sin
Lim

sinx

ax

bx→

 
 
 

 where b ≠ 0.

2. Show that 
0

Lim
n n

x

x a

x a→

−

−
= na

n–1.

3. Evaluate 
20

log (1 )
Lim

r

x

xe x

x→

− +
.

4. Prove that if Lim ( )
x a

f x
→

exists, it must be unique.

5. Show that the function defined by:

0 for x < 0

1

2
x− for 0 < x < 

1

2

φ (x) = 
1

2
for x = 

1

2

3

2
x− for 

1

2
 < x < 1

1 for x > 1

is not continuous at x = 0, 
1

2
 and 1.

6. Show that f (x) = x sin 
1

x
, x ≠ 0 and f (0) = 0 is continuous for all values

of x.

7. Evaluate 
0

log (1 )
Lim
x

x

x→

+ 
 
 

.

8. Prove that if f (x), g (x) are continuous functions of x at x = a, then

f (x) ± g (x), f (x) g (x) and 
( )

( )

f x

g x
 [provided g (a) ≠ 0] are continuous, at

x = a.

9. Evaluate 

1

0

4
sin

3
Lim
x

x

x

−

→

 
 
  .

10. Prove that the function f (x) defined as under:

f (x) = x sin 
1

x
, x ≠ 0

= 0,            x = 0

is continuous at x = 0.
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11. Differentiate the following functions with respect to x,

(i) 3x
2 – 6x + 1, (2x

2 + 5x – 7)5/2

(ii)
2

2

1
,

1

x ax hx g

x hx bx f

− + +

+ + +

(iii) e
sin x, logtan x, log sin2 x3, log ax

(iv) 2
1 , sin cos , tan logx x x x x−

(v)
3

2

(3 4) (2 )

5 1

x x

x

− −

+

(vi) 2
1 3 tan x−

(vii) sin
4

x
π 

−  

(viii) cos x

12. Differentiate the following with respect to x:

(i) sec–1
x, cot–1

x, cosec–1
x

(ii) sec h–1
x, cosec h–1

x, cot h
–1

x

(iii) (sin x) log x + (log x)cos x

(iv) sin h–1
x, cos h–1

x, tan h–1
x

(v) x = tan–1
t, y = t sin 2t

13. If y = (1 – x)1/2 (sin x) e
x, prove that:

        dy

dx
 = (1 – x)1/2 (sin x) e

x 
11

1 cot (1 ) .
2

x

x x
− 

+ − −  

14. If 4 41 1x y− + −  = k(x2 – y2), prove that 
dy

dx
 = 

4

4

1

1

yx

y
x

−

−
.

[Hint. Put x2 = sin θ, y2 = sin ϕ.]

15. If 1 1x y y x+ + +  = 0, prove that:

dy

dx
 = 2

1

(1 )x

−
+

16. Differentiate the following with respect to x:

(i) (x + 1)(x + 2)(x – 1) (ii)
sin

tan

x
x

x

17. Given that 
2 3

cos cos cos ... inf
2 2 2

x x x
ad  = 

sin

2

x
,

prove that 
2 2 3 3

1 1 1
tan tan tan ... inf

2 2 2 2 2 2

x x x
ad+ + +  = 

1
cot x

x
− .
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18. Differentiate the following with respect to x, n times:

(i) sin2
x sin 2x, cos4

x, cos2
x sin3

x

(ii) e
x log x, x3 log x

(iii) x
n–1 log x

(iv)
( )( )( )

x

x a x b x c− − −

(v) x
3 cos x

19. If y = e
e

x

, prove that 
3

3

x d y
e

dx

−  = 
2

2

2d y dy
y

dxd x

+ + .

20. If y = 
1

x
xsin , show that 

2

2

2d y dy
y

x dxd x

+ +  = 0.

21. If y = e
xsin2

, prove that y
2
 = (1 4 cos 2 cos 4 )

2

y
x x+ + .

22. Determine the values of constants A and B such that if

           y = ex (A cos x + B sin x), then for all values of x,

2

2
3 4

d y dy
y

dxdx

− +  = e
x sin x

23. Given that y = eax sin x, prove that,

2
2

2
2 ( 1)

d y dy
a a y

dxdx

− + +  = 0

Hence or otherwise calculate:

                y
1
(0), y

2
(0), y

3
(0), y

4
(0), and y

5
(0).

24. If 1cos
y

b

−  
  

 = log

n
x

n

 
  

, show that,

x
2
y

n+2
 + (2n + 1)xy

n+1
 + 2n

2
y

n
 = 0.

25. If y = em sin– 1
x, show that (1 – x2)y

2
 – xy

1
 – m2

y = 0 and deduce

that,

(1 – x
2)y

n+2
 – (2n + 1)xy

n+1
 – (n2 + m

2)y
n
 = 0.

26. Compute 
z

x

∂

∂
 and 

z

y

∂

∂
 for the functions:

(i) z = (x + y)2

(ii) z = log (x + y)

(iii) z = 2 2

x

x y+

(iv) z = e
x

y

(v) z = eax sin by

(vi) z = log (x2 + y2)
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27. If z = tan (y + ax) + (y – ax)3/2,

find the value of 

2 2
2

2 2

z z
a

x y

∂ ∂
−

∂ ∂
.

28. If θ = 
2 /− ut

n r
t e , find the value of n which will make:

2

2

1 θ
r

r rr

∂ ∂ 
 

∂ ∂ 
 equal to 

θ

t

∂

∂
.

29. If y = rm where r2 = x2 + y2 + z2, show that

2 2 2

2 2 2

v v v

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
 = m(m + 1) r

m–2.

30. If u = f (ax
2 + 2hxy + by

2), v = ϕ (ax
2 + 2hxy + by

2), prove that

u
y x

∂ ∂ 
  ∂ ∂

 = 
v

u
x y

 ∂ ∂
 ∂  ∂ 

.

31. Discuss the maxima and minima of the following functions:

(i) x5 – 5x4 + 5x3 – 10

(ii) x3 – 3x2 – 9

(iii)
1

1
x

x
+

+

(iv)
( )

2

2

3

1

x

x

+

+

(v) x + sin 2x (for 0 ≤ x ≤ π)

(vi) cos x + cos 3x (for 0 ≤ x ≤ π)

32. Show that there is a minimum at x = 0 for the function:

2
4 4( ) sin

2
f x x x x

π 
= − + 

 

2.13 FURTHER READING

Khanna, V.K, S.K. Bhambri, C.B. Gupta and Vijay Gupta. Quantitative

Techniques. New Delhi: Vikas Publishing House.

Khanna, V.K, S.K. Bhambri and Quazi Zameeruddin. Business Mathematics.

New Delhi: Vikas Publishing House.





Coordinate Geometry

NOTES

Self-Instructional Material 159

UNIT 3 COORDINATE GEOMETRY

Structure

3.0 Introduction
3.1 Unit Objectives
3.2 Coordinate Geometry: An Introduction

3.2.1 The Distance Formula
3.2.2 Midpoint of a Line Segment

3.3 Section Formula: Division of Lines
3.3.1 Internal Division
3.3.2 External Division

3.4 Equation of a Line in Slope-Intercept Form
3.4.1 Variations of Slope-Intercept Form

3.5 Equation of a Line in Normal Form
3.5.1 Angle between Two Lines
3.5.2 Families of Parallel Lines

3.6 Distance of a Point From a Line
3.6.1 Area of a Triangle

3.7 Summary
3.8 Key Terms
3.9 Answers to ‘Check Your Progress’

3.10 Questions and Exercises
3.11 Further Reading

3.0 INTRODUCTION

Descartes, a French mathematician, developed a system of calculating the

dimensions of a plane with the help of its points of location or coordinates. A

coordinate plane consists of an x-axis and a y-axis; the points of intersection on

this plane give the coordinates. The X-axis coordinate is called abscissa, while the

Y-axis coordinate is known as ordinate. In this unit, the basic theorems and formulae

of coordinate geometry have been introduced. The unit covers problems related

to distance formulae, section formulae and the division of a line (internal and

external). You will learn to calculate the slope of a non-vertical line. The equations

of a line in the slope-intercept form as well as the normal form have been dealt

with in this unit. You will also learn how to calculate the distance between a point

located on the coordinate plane and a given line. This unit covers the angle between

two lines and the area of a triangle formed by lines located on the coordinate

plane.

3.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Understand the basic concepts and theorems of coordinate geometry

• Understand the application of section and distance formulae
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• Learn how to determine the slope of a non-vertical line

• Learn how to obtain the equations of a line in slope-intercept form and

normal form

• Calculate the distance of a point located in the coordinate plane from a

given line

• Learn how to calculate the angle between the two lines

• Learn how to calculate the area of a triangle formed by lines located on a

coordinate plane

3.2 COORDINATE GEOMETRY: AN

INTRODUCTION

Analytical geometry is also called algebraic or coordinate geometry, is that branch

of geometry that is applied to evaluate the properties of plane figures by means of

coordinates of points. To do this, we make use of the notations and operations of

algebra and analyse the problems discussed in pure geometry systematically to

arrive at their solutions.

Relationships between two or more geometrical figures are usually described

by more than one variable. Analytical geometry is one of the several methods of

studying these relationships.

We shall consider here the concepts of the point and lines in analytical

geometry.

3.2.1 The Distance Formula

To find the distance between two points

P
1
(x

1
, y

1
) and P

2
(x

2
, y

2
).

Draw P
1
M

1
  ⊥ OX, P

2
M

2
 ⊥ OX,

    P
1
N ⊥ P

2
M

2 
(see Figure 3.1)

Y

P x y( , )22 2

y y – 12

N
P x y1 1 1( , )

x x – 12

O M1 M2

X

P
1
N = OM

2
 – OM

1
 = x

2
 – x

1

P
2
N = P

2
M

2
 – P

1
M

1
 = y

2
 – y

1

In the right angled triangle P
1 
N P

2
,

we have, by Pythagoras’ theorem,

d2 = P
1
P

2

2 = P
1
N

2
 + P

2
N

2
         Figure 3.1 Distance between Two Points P

1
, P

2

       = (x
2
 – x

1
)2 + (y

2
 – y

1
)2

The distance P
1
P

2
 is given by,

d = 2 2

2 1 2 1( – ) ( – )x x y y

Applying this formula, the length of the segment between the points (2, – 1),

(– 3, 4) is given by,
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d = 2 2(– 3 – 2) (4 – (–1))+

= 25 25 50 5 2+ = = .

Similarly, the distance between A (a, 0)

and B(0, b) is given by (see Figure 3.2):

Y

(0, )b

O
X

( , 0)a

Figure 3.2 Distance between Two Points A, B

A

B

d = 2 2(0 – ) ( – 0)a b+

= 2 2
a b+

Which can also be proved by Pythagoras’

theorem.

Example 3.1: If the distance of a point

P(x, y) from the origin is twice that from

(a, b). What is the relation between x, y,

a, b?

Solution: Distance of P from (0, 0) is,

 2 2 2 2( – 0) ( – 0)x y x y+ = +

Distance of P from (a, b) is 2 2( – ) ( – )x a y b+

We have, 2 2 2 22 ( – ) ( – )x y x a y b+ = +

∴  x2 + y2 = 4(x – a)2 + 4(y – b)2

This is the required relation which may be simplified further.

CHECK YOUR PROGRESS

1. Find the lengths of the sides and diagonals of the rectangle formed by the

four points (0, 0) (a, b), (0, b) (a, 0).

2. If a circle has the centre (–5, 1) and passes through the point (– 3, – 3),

what is its radius?

3.2.2 Midpoint of a Line Segment

Let P
1
(x

1
, y

1
), P

2
(x

2
, y

2
) be the end

points on the line segment P
1
P

2
 whose

midpoint is P(x, y) (see Figure 3.3).

We can easily see that

Y

y y – 1

P x y1 1 1( , )

x x – 2

O

N x y1 1( , )

x x – 1

P x y( , ) N x y2 2( , )

x y2 1– 

P x y2 2 2( , )

X

x – x
1

= x
2
 – x

i.e., 2x = x
2
 + x

1

∴ x = 
1 2

2

x x+

Similarly, y – y
1

= y
2
 – y   Figure 3.3 Midpoint of a Line Segment
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∴ y = 
1 2

2

y y+

The coordinates (x, y) of the midpoint P can be written as:

1 2 1 2,
2 2

x x y y+ + 
 
 

Applying this formula, the coordinates of the midpoint of the line segment joining

(3, 4) and (5, 6) will be:

3 5 4 6
4, 5

2 2
x y

+ +
= = = =

CHECK YOUR PROGRESS

3. Find the coordinates of the centroid G of the triangle whose vertices are

(3, 2), (–1, – 4), (– 5, 6). (A centroid is the meeting point of the three

medians. It divides each median in the ratio 2: 1).

Prove that G = 
1 2 3 1 2 3,

3 3

x x x y y y+ + + + 
 
 

, where (x
1
, y

1
), (x

2
, y

2
) and

(x
3
, y

3
) are the vertices of the triangle.

4. Given P(3, 2), Q(5, 8), find the coordinates of R on PQ so that

(i) P is the midpoint of QR

(ii) Q is the midpoint of PR

(iii) R is the midpoint of PQ

5. Find the point (x, y) on the y-axis equidistant from (3, 2), (– 5, –2).

3.3 SECTION FORMULA: DIVISION OF LINES

In this section, you will learn to calculate the coordinates of the point that divides

a line.

There are two possibilities:

1. P lies on the segment P
1
P

2
.

2. P lies externally on extended P
1
P

2
.

3.3.1 Internal Division

When the first of the two possibilities occur, it is called the internal division of a

line. Let the line segment P
1
P

2
 formed by joining P

1
(x

1
, y

1
) and P

2
(x

2
, y

2
) be

divided at P(x, y) (see Figure 3.4).
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Given that,

1

2

PP

PP
= 

1

2

k

k

Triangles PP
1
N

1
 and P

2
PN

2
 are similar,

∴
1

2

PP

PP
= 

1

2

–

–

x x

x x

∴
1

2

k

k
= 

1

2

–

–

x x

x x

Y

y y – 1

P x y1 1 1( , )

x x – 2

O

x x – 1

P x y( , )

N x y2 2( , )

y y2 1– 

P x y2 2 2( , )

X

N2

N1 N

Figure  3.4 Internal Division

∴k
1
x

2
 – k

1
x = k

2
x – k

2
x

1

Or, k
1
x + k

2
x = k

1
x

2
 + k

2
x

1

∴ x = 
1 2 2 1

1 2

k x k x

k k

+

+

Similarly, since 1

2

PP

PP
 = 

1

2

–

–

y y

y y
 we have,

       y = 
1 2 2 2

1 2

k y k y

k k

+

+

 Applying this foormula, the coordinates of P(x, y) dividing the line segment joining

(1, 2) and (3, 4) in the ratio 1 : 3 are given by,

x = 1 2 2 1

1 2

1 3 3 1 3

1 3 2

k x k x

k k

+ × + ×
= =

+ +

y = 
1 2 2 1

1 2

1 4 3 2 5

1 3 2

k y k y

k k

+ × + ×
= =

+ +

3.3.2 External Division

Here, 1

2

PP

PP
= 

1

2

k

k

Triangles PP
1
N and PP

2
N

2
 are similar.

Y

y y2 1 – 

P x y1 1 1( , )

x x – 2

O

P x y( , )22 2

P x y( , )

X

N2

N1 N

Figure 3.5  External Division

∴ 1

2

PP

PP
= 

1

2 2

P N

N P

∴ 1

2

k

k
= 

1

2

–

–

x x

x x
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∴  k
1
(x – x

2
) = k

2
(x – x

1
)

k
1
x – k

1
x

2
= k

2
x – k

2
x

1

∴ x(k
1
 – k

2
) = k

1
x

2
 – k

2
x

1

Thus, we have x = 
1 2 2 1

1 2

–

–

k x k x

k k

Similarly, y = 
1 2 2 1

1 2

–

–

k y k y

k k

Applying this formula, the coordinates of P(x, y) dividing the line segment joining

(1, 2) and (3, 4) externally in the ratio 5 : 4 are given by,

x =  
5 3 – 4 1

11
5 – 4

× ×
=

y = 
5 4 – 4 2

12
5 – 4

× ×
=

Hence, we learnt that:

• The coordinates of internal division are 
1 2 2 1 1 2 2 1

1 2 1 2

,
k x k x k y k y

k k k k

 + +
 

+ + 
.

• The coordinates of external division are

1 2 2 1 1 2 2 1

1 2 1 2

– –
,

– –

k x k x k y k y

k k k k

 
 
 

 or 2 1 1 2 2 1 1 2

2 1 2 1

– –
,

– –

k x k x k y k y

k k k k

 
 
 

.

Example 3.2: In what ratio does the origin divide line joining (6, 0), (– 3, 0)?

Solution: Let the ratio be k : 1. Origin liss between these two points. Hence, it is

an internal division. Then two coordinates of the dividing point, i.e., (0, 0) are

 x = 
(– 3) 1.6

0, 0
1

k
y

k

+
= =

+

∴ – 3k + 6 = 0 or k = 2 the ratio is 2 : 1

CHECK YOUR PROGRESS

6. If one end of the diameter of a circle with centre C(– 4, 1) is P(2, 6), find

the coordinates of the other end of the diameter.

7.  Write the coordinates of the point of trisection of the line segment joining

(1, 0), (8, 10).

8. Find the ratio of which the Y-axis divides the join of (3, 5), (6, 7).
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3.4 EQUATION OF A LINE IN SLOPE-INTERCEPT

FORM

The graph of a linear function ax + by + c = 0, where a, b, c are real numbers, is

a straight line.

Every equation of the first degree in x, y represents a straight line. Two

points are enough to determine a line.

The equation of a straight line is often written in the following form:

y = mx + c

In this section, we will derive the equations of a line in slope-intercept form and

normal form. Let us first derive the value of the slope of a line.

L e t  P
1
(x

1
, y

1
), P

2
(x

2
, y

2
) be any two points on a line.

  

P

x y
1

1 1( , )

P x y( , )22 2

A

O
X

Y

P x y1 1 1( , )

P x y( , )22 2

A

O
X

Y

�y = y  – y2 1

�x = x  – x2 1 �x

�y

       Figure 3.6   Positive Slope                       Figure 3.7   Negative Slope

Then, the slope m of the line is defined by:

m = 
2 1

2 1

–

–

y y y

x x x

∆
=

∆

= 
Vertical change

Horizontal change

The slope is positive if the line rises to the right (see Figure 3.6). The slope

is negative, if the line rises to the left (see Figure 3.7).

Applying this formula, the slope of a line through (4, 7), (2, 1) is

m = 
2 1

2 1

– 1 – 7
3

– 2 – 4

y y

x x
= =

Similarly, if (4, –2) is a point on a line passing through the origin (0, 0) its slope is

m = 
– 2 – 0 1

–
4 – 0 2

= .

Thus, the equation of a line in slop-intercept form is y = mx + c.
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Note: Whenever we take two points on the same line, the slope will be the

same quantity m. In each  case:

Let (x
1
, y

1
) be on a line (see Figure 3.8)

y = mx + c.

Then, y
1

= mx
1
 + c

1
.

If (x
2
, y

2
) is on the same line, then

y
2

= mx
2
 + c

2      

Y

X

y 
– 

m
x 
+ 

c

A

O

(0, )c

Slope mSubtracting

y
2
 – y

1
= mx

2
 – mx

1

= m(x
2
 – x

1
)

We have the slope m = 
2 1

2 1

–

–

y y

x x
Figure 3.8  Slope-Intercept Form

Which is a constant quantity since x
1
, y

1
, x

2
, y

2
 are constant quantities.

The slope of the line y = mx + c is the value of the coefficient of x.

(Here, it is m)

Also, OA is the intercept made by the line on the y-axis. It is the value of y,

where the line cuts the y-axis, i.e., where x = 0. (here OA = c).

For any equation ax + by + c = 0 (see Figure 3.9), we can find the slope by

writing it as

y = – (a/b)x – c/b

Y

X

ax
by

c

 +
 

 +
 

 =
 0

 

A

O

Slope
– a
b

0,
– c

b

Where, 
either  < 0
or        < 0 and  < 0

b
a c

Figure 3.9 Slope of a Line

This line is of the form, y = mx + c.

∴  Here, slope = – 
a

b
 and the intercept = – 

c

b
.

The Figure 3.9 shows positive slope. Hence, either b < 0 and a and c both

are positive or b > 0 and a and c, both are negative
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Applying the formula, if P
1
(4, 7), P

2
(2, 1) are points on a line, find the

slope of the line,

m = 
2 1

2 1

– 1 – 7 – 6
3

– 2 – 4 – 2

y y

x x
= = = .

Similarly, if P(4, 2) is a point on a line passing through the origin (0, 0), the

slope is given by,

m = 
2 – 0 1

4 – 0 2
= .

Example 3.3: Find the slope of the line 3y = 9x – 2.

Solution: The slope can be obtained by writing the line equation as

y = 
9 2

–
3 3

x
∴ m = 3

Using the same formula, the slope of the line x = 2y – 7 is obtained by

writing the line equation as

y = 
1 7

2 2
x + ∴ m = 

1
–

2
.

Similarly, the slope of the line – 1
2 3

x y
=  is obtained by writing it as

y = 
3

– 3
2

x ∴
3

.
2

m =

3.4.1 Variations of Slope-Intercept Form

1. y = mx + c

This is the equation of a line with slope m and intercept c on the y-axis.

Let the line cut the y-axis at A (see Figure 3.10 (i)). At A, x = 0 so that by

substitution,

y = m × 0 + c, 

∴                          y = c

∴ Coordinates of A are (0, c)

At B, y = 0 so that 0= mx + c

∴           x = 
c

m

∴        Coordinates of B are – , 0
c

m
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Y

X

y 
= 

m
x 
+ c

A

OB

Y

X

y 
= 

m
x

O

Y

XO

y = c

( )iii( )ii( )i

C

Figure 3.10  Interceptors Y-axis

2. If the line passes through the origin, there is no intercept, i.e., c = 0.

y = mx is the equation of a line with slope m, passing through the origin

(see Figure 3.10(ii)). The slope is m = 
y

x
.

If m is positive, the line makes an acute angle with the x-axis.

If m is negative, the angle is obtuse.

3. Any straight line can be written in the general abstract form of an equation:

y = mx + c

A line is a particular form of association or relation between two quantities,

x and y; x and y are variables whose variations are under consideration.

m is the slope of the line. The slope of a line shows the increase in the value

of always y for a unit increase in x. A line has a constant slope.

Also,  c = OA intercept on y-axis

–
c

m
= OB intercept on x-axis

If c = 0, there is no intercept on the y-axis (nor on the x-axis) and the

equation reduces to y = mx. This is a line passing through the origin

(see Figure 3.10 (ii)).

4. If m = 0, the resulting line y = c is parallel to the x-axis, at a distance c from

the y-axis. Its slope is zero. [(see Figure 3.10 (iii)]

m and c are called parameters of the equation. They are constant for a

given straight line. Different values of m and c will give lines with different slopes

and intercepts.

5. The relation  y = mx + c is often used in economics as an approximate

linear model because, in practice, exact linear relations are not possible.
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6. Equation of a line with slope m and passing through (x
1
, y

1
)

Let (x, y) be any point on a given line.

The slope of the line is given by

m = 
1

1

–

–

y y

x x

∴ y – y
1

= m(x – x
1
)

This is the equation of the line passing through (x
1
, y

1
)

7. Equation of a line having intercept a on x-axis and intercept b on

y-axis

The slope of a given  line (see Figure 3.11) is,

– 0

0 –

b

a
= –

b

a

If (x, y) is any point on the line express, we can also find value of the slope

as follows:

– 0

–

y

x a
= 

–

y

x a
   

B

O
X

Y

A

(a, 0)

(0, b)

Figure 3.11 Intercept Form of a Line

∴
–

y

x a
= –

b

a

y

b
= 1

x

a
+

∴ 1
x y

a b
+ =  is the equation of the line with intercepts a, b on the axes.

8. For two given lines y = m
1
x + c

1
 and y = m

2
x + c

2 
their relationship will be

expressed as follows:

(i) Intersecting lines: The two lines intersect, if there is a value of x which

satisfies the two simultaneously.

m
1
x + c

1
= m

2
x + c

2

∴ x = 
2 1

1 2

1 2

–
( )

–

c c
m m

m m
≠

If θ is the angle between two intersecting lines,  tan θ = 
2 1

1 2

–

1

m m

m m+

(ii) Parallel lines: If m
1
 = m

2
, the lines are parallel. The slopes of parallel

lines are equal.
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(iii) Identical lines: If m
1
 = m

2
 and c

1
 = c

2
, the two lines coincide. The

slopes and intercepts of identical lines are equal.

(iv) Perpendicular lines: If m
1
m

2
 = – 1, then the lines are perpendicular.

The product of the slopes of perpendicular lines is –1.

These relationships can be expressed in following terms for lines,

a
1
x + b

1
y + c

1
= 0 and a

2
x + b

2
y + c

2
 = 0.

Their slopes are m
1

= – 
1

1

,
a

b
m

2
 = 

2

2

–
a

b
.

The lines intersect, if 1 2

1 2

– –
a a

b b
≠ .

The lines are parallel, if 1 2

1 2

– –
a a

b b
= , i.e., if  

1 2

1 2

a a

b b
= .

The lines are identical, if 1 2 1

1 2 2

a a c

b b c
= = .

The lines are perpendicular, if 
1 2

1 2

– – – 1
a a

b b

   
=   

   
.

i.e., 1 2

1 2

a a

b b
 = – 1 or a

1
a

2
 = – b

1
b

2
. We can also express this as

a
1
a

2
 + b

1
b

2
 = 0.

3.5 EQUATION OF A LINE IN NORMAL FORM

In this section, we will derive the equation for a given line in normal form.

Let us consider a line AB at a distance p from the origin (see Figure 3.12).

Let P(x, y) be a point on the line.

PM makes an angle θ with the line.

(PM is perpendicular to x-axis,

OQ  = p is perpendicular to the line and

makes angle θ with positive x-axis.)

OQ = OA cos θ        

B

O
X

Y

A

P x, y( )

M

Q

p

Figure 3.12  Normal Form of a Line

= (OM  + MA) cos θ

∴ p = (x + y tan θ)  cos θ

∴ x cos θθθθ + y sin θθθθ = p is the

equation of a line making an angle θ with

the   x-axis. It is known as the equation

of a line in normal form.

For x = 0, the y intersect = p/sin θ.

For y = 0, the x intersect = p/cos θ.
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Example 3.4: Find the equation of a line that passes through A(x
1
, y

1
) and makes

an angle θ with x-axis.

Solution: Let P(x, y) be on the line and let AP = r (see Figure below).

cos θ = 
1 1– –

or
cos

AB x x x x
r

AP r
= =

θ

sin θ = 
1–BP y y

AP r
=

Or,           
1–

sin

y y

θ
 = r

Y

X

A x , y( )11

O

B

r
P x y( , )

Figure 3.13

∴ The required equation is

      
1–

cos

x x

θ
= 

1–

sin

y y
r=

θ

 Thus, x = x
1
 + r cos θ and y = y

1
 + r sin θ are the coordinates of any point

on the above line at a distance r from A.

CHECK YOUR PROGRESS

9. Find the slopes of the lines passing through:

(i) (– 1, 0), (1, 0)

(ii) (a, b), (2a, 2b)

(iii) (0, 0) (2, 5)

(iv) (a + k, b + k), (a + m, b  + m)

(v) (– a, – b), (– b, – a)

3.5.1 Angle between Two Lines

In this section, we will derive a formula, to determine the value of the angle made

by two line.

Given y = m
1
x + c

1
, y = m

2
x + c

2
 making angle α

1
, α

2
 with the x-axis

(see Figure 3.13).

Slopes tan α
1

= m
1
, tan α

2
 = m

2

α
1
 – α

2
= θ or π – θ

∴ tan (α
1
 – α

2
) = tan θ

Or, tan (π – θ) i.e.,  – tan θ   

Y

X
O

Figure  3.13  Angle between Two Lines

∴ tan θ = ± 1 2

1 2

tan – tan

1 tan tan

α α

+ α α

= ± 1 2

1 2

–

1

m m

m m+
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Notes:

             1.  Two lines are parallel, if tan θ = 0 i.e., m
1
 = m

2
.

  2.  They are perpendicular, if tan θ = ∞ i.e.,  m
1
m

2
 = – 1.

  3. The lines a
1
x + b

1
y + c

1
 = 0 and a

2
x + b

2
y + c

2
 = 0 are parallel, if

m
1 

= – a
1
/b

1
 = – a

2
/b

2
 = m

2
. The lines are perpendicular, if 

1 2

1 2

– –
a a

b b

   
   
   

 =

– 1, i.e., a
1
a

2
 + b

1
b

2
 = 0.

Example 3.5: What is the equation of a line passing through (a cos3 θ, a sin3 θ)

and perpendicular to the line x sec θ + y cosec θ = a?

Solution: Slope of the line = 
sec

–
cosec

θ

θ

The required line perpendicular to it has slope = 
cosec

sec

θ

θ

∴ Its equation is y – a sin3 θ = 
cosec

sec

θ

θ
 (x – a cos3 θ)

solving and rearranging, we get

x cos θ – y sin θ = a (cos4 θ – sin4 θ)

= a(cos2 θ – sin2 θ) (cos2 θ + sin2 θ)

= a cos 2θ

Example 3.6: Find the equation of a line that passes through (a, b) which makes

an angle α with y = mx + c.

Solution: If this line PQ (see Figure) has slope m
1
, then

tan α = ± 1

1

–

1

m m

m m+

∴ m
1

= 
tan

1 tan

m

m

α

± α

∓

There are two lines

O
X

Q

P a b( , )
Y

y
m

x
c

 =
 

 +
  

y – b = 
tan

( – )
1 tan

m
x a

m

− α

+ α

y – b = 
tan

( – )
1 tan

m
x a

m

+ α

− α
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3.5.2 Families of Parallel Lines

A family of parallel lines can be expressed generally by the equation y = mx + c,

where c can take varying values c
1
, c

2
,... etc. (see Figure 3.14).

O
X

Y

O
X

Y

2

4

2
c = 2

c = 4
c = 6

c = 8

2
 + 

 = 

x
y

c

y = m
x + c

3

y = m
x + c

2

y
m

x
c

 = 
 + 

1

c
0

 = 

(i) (ii)

Figure 3.14   Family of Parallel Lines

If some constraints are imposed on the equation, it is possible to find the

highest value of the parameter c in a given situation.

Applying the same concept, if 2x + y = c, the line giving the highest value of

c passes through the upper right vertex of the quadrilateral which is given by

0  ≤ x ≤ 4, 0 ≤ y ≤ 8 (see Figure 3.14 (ii)).

This corresponds to c = 8

2x + y = 8.

Example 3.7: What is the equation of a

line that makes intercepts, – 2 and – 5,

on the axes (see Figure)?

Solution:
– 2 – 5

x y
+ = 1

X
O

(0, – 5)

(–2, 0)

∴ – 5x – 2y = 10

Or, 5x + 2y + 10 = 0
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CHECK YOUR PROGRESS

10. What is the equation of a line that meets x-axis at (3, 0) and y-axis at

(0, –5)?

11. What is the equation of a line passing through (2, 3) with its intercept on

x-axis twice the intercept on y-axis?

12. Find the equation of a line passing through (2, 6) and (5, 3). Find its slope

and intercepts.

13. For what values of c will the point (7, c) lie on the line passing through

(3, 6) and (– 5, 2)?

14. Two vertices of an equilateral triangle are (– 4, 0), (4, 0). Find the third

vertex.

Example 3.8: Consider the slopes of the following lines:

AB, AB
1
, AB

2
, AB

3 
, AY, AO, AB

4
, AB

5

The slope of AB is zero. The  slope goes on  increasing and the slope of AY

is ∞.

The line AO is the same as AY.

The slopes of AB
4
, AB

5 
are negative. What about the intercepts of these

lines?

Solution:

O
B4

B5

X

B

B1

B2

B3

Y

A

As evident from the Figure above, intercept OA falls on y-axis having no

intercept whereas intercepts for other lines fall on x-axis.
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Example 3.9: Prove that the figure formed by the points A(3, 1), B(6, 0), C(4, 4)

is a right angled triangle.

Solution: Consider the Figure given here

Slope of AB = 
0 – 1 1

–
6 – 3 3

=

Slope of AC = 
4 – 1

3
4 – 3

=

1
– 3

3
× = – 1        

O
X

Y

B

A

C (4, 4)

(3, 1)

(6, 0)

∴ AB ⊥ AC

By finding the lengths of the lines.

We can prove that,

BC2 = AB2 + AC2

CHECK YOUR PROGRESS

15. Given that (– 3, – 2), (7, 4), (1, 14) are the vertices of an isosceles right

angled triangle, find the length of the perpendicular from the vertex of the

right angle to the hypotenuse.

16. (i) (2, 4), (6, 2), (8, 6) are three vertices of a square. Find the fourth

vertex.

(ii) If (3, 6), (– 5, 2), (7, y) are points on the same line find y.

17. (i) Find the equation of the line parallel to the line 5x – 7y – 10 = 0 and

passing through (3, – 4).

(ii) Find the equations of the medians of a triangle with vertices (1, 6),

(3, – 4), (– 5, – 1).

18. Find the equation of the line passing through (8, 3) and through the point of

intersection of the lines 5x – 2y + 15 = 0, 3x + y = 13.

3.6 DISTANCE OF A POINT FROM A LINE

In this section, you will learn to calculate the distance of a point, located in a

coordinate plane, from a given line.

Let us consider a point R with coordinates (x
1
, y

1
,) Let the line be

ax + by + c = 0 (see Figure 3.15)
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y

x

Q p

R(x , y )1 1

T

O P

Figure 3.15  Distance of a Point from a Line

The equation of line PQ is ax + by + c = 0. Draw a perpendicular from R on PQ.

RT will give us the distance between point R and line PQ.

Suppose RT = p

From equation of the line, we can deduce the coordinates of P and Q, which will

be ,0
c

a

− 
 
 

 and 0,
c

b

− 
 
 

 respectively..

By using the distance formula, learnt in previous sections, we have

PQ = 

2 2

0 0
c c

a b

−   
+ + −   

   

    = 
2 2

2 2

2 2

c c c
a b

a b ab
+ = +

Now,  join PR and RQ so that ∆PQR is formed.

Area of a triangle with three vertices (x
1
, y

1
), (x

2
, y

2
) and (x

3
, y

3
) is given

by

1

2
[x

1
(y

2
 – y

3
) + x

2
(y

3
 – y

1
) + x

3
(y

1
 – y

2
)]

Thus, area of ∆PQR  = 1 1 1

1
0 0(0 )

2

c c c
x y y

b a b

 − −    
− + − + +    

    

       = 

2

1 11

2

x c y c c

b a ab

 −
+ + 

 

        = ( )2

1 1
2

c
ax by c

ab
+ + ...(3.1)

Now, we know that area of a triangle is also the product of its base and

height divded by 2.
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Hence, for ∆PQR, its area

= 
1

2
 × PQ × p. ...(3.2)

Equating equation (1) and (2), we get

            
1

. .
2

PQ p = 
2

c

ab
 (ax

1
 + by

1
 + c)

p = 
1 1( )

.
c ax by c

PQ ab

+ +

  = 1 1

2 2

( )

.

c ax by c

c
a b ab

ab

+ +

+

 = 
1 1

2 2

ax by c

a b

+ +

+

The length of a line can only be positive.

Hence,              p = 
1 1

2 2

ax by c

a b

+ +

+

Thus, the distance between point R and line PQ is given by the absolute

value of 
1 1

2 2

ax by c

a b

+ +

+
.

3.6.1 Area of a Triangle

Let the coordinates of the vertices

(see Figure 3.16) be given by:

A(x
1
, y

2
), B(x

2
, y

2
), C(x

3
, y

3
)      

Y

O
X

A x y( , )1 1

C x y( , )3 3

B x y( , )2 2

C1A1B1

Figure 3.16  Finding Area of a Triangle

It may be remembered that the

area of  trapezium

= 
1

2
 × Sum of parallel sides

× Perpendicular distance between

them.

Thus,  AA
1
B

1
B = 

1

2
 (AA

1
 + BB

1
)A

1
B

1

= 
1

2
 (y

1
 + y

2
) (x

1
 – x

2
)
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∆ABC = Trap. AA
1
B

1
B  + Trap. ACC

1
A

1
 – Trap. BCC

1
B

1

= 
1

2
(y

1
 + y

2
) (x

1
 – x

2
) + 

1

2
 (y

1
 + y

3
) (x

3
 – x

1
)

– 
1

2
 (y

2
 + y

3
) (x

3
 – x

2
)

= 
1

2
(x

1
y

2
 – x

2
y

1
 + x

2
y

3
 – x

3
y

2
 + x

3
y

1
 – x

1
y

3
)

= 
1

2
[(x

1 
(y

2
 – y

3
) + x

2 
(y

3
 – y

1
) + x

3 
(y

1
 – y

2
)

If three points lie on a  straight line, the area of the triangle formed by them
is zero, i.e., = 0. Infact, this is the condition for three points to be on a line

(collinearity). = 
1

2
[(x

1 
(y

2
 – y

3
) + x

2 
(y

3
 – y

1
) + x

3 
(y

1
 – y

2
)

CHECK YOUR PROGRESS

19. Find the area of a triangle with vertices:

(i) (10, 7), (– 2, 3), (0, 0);

(ii) 91, 3) (5, 6), (2, 4)

20. If (0, 4), (– 1, 3), (k, 5) are collinear, find k.

3.7 SUMMARY

In this unit, you have learned that:

• ax + by + c = 0 is a linear equation. It is of degree one in x and y. It can be

represented geometrically by a straight line.

• If (x
1
, y

1
), (x

2
, y

2
) are points on a line, its slope is defined by:

tan θ = m = 
2 1

2 1

–

–

y y

x x

where θ is the smallest positive angle between the lines and the positive

x-axis. The rate of change of a linear function ax + by + c = 0 is constant

and equals the slope of the line.

• There are many forms of the equation of a straight line such as:

The slope-intercept from y = mx + c

The point-slope form y – y
1
 = m(x – x

1
)

The two-point form 1

2 1

–

–

y y

y y
 = 

1

2 1

–

–

x x

x x

The intercept form 
x y

a b
+  = 1
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The line parallel to y-axis x = k

The line parallel to x-axis y = k

 • In the general form ax + by + c = 0, the slope –
a

m
b

=  and the intercepts

are –
c

a

 on x-axis and –
c

b
 on y-axis.

If a = 0, the line is parallel to x-axis;

if b = 0, the line is parallel to y-axis.

 • If two lines with slopes m
1
, m

2
 are parallel, then m

1
 = m

2 
.

If they are perpendicular m
1
m

2
 = – 1

 • If θ is the angle between two perpendicular lines, then tan θ = 
2 1

1 2

–

1

m m

m m+

• The coordinates of the point of intersection for two intersecting lines, obtained

by solving the equations, satisfy the equations of both the lines.

• Three given lines have a common point of intersection if the coordinates of

the intersection point on any two lines satisfy the equation of the third line.

• The normal form of the equation of a line is given by:

x cos θ + y sin θ = p

• The perpendicular distance of a given points (x
1
, y

1
) from a given line

ax + by + c = 0 is given by:

p = 1 1

2 2

ax by c

a b

+ +

+

The perpendicular from the origin to this line is p = 
2 2

c

a b+

• Distance between parallel lines is the perpendicular distance of any point on

one of the lines from the other line.

• Any line through the intersection of two given lines,

a
1
x + b

1
y + c

1
 = 0 and a

2
x + b

2
y + c

2
 = 0 is expressed by:

a
1
x + b

1
y + c

1
 + k(a

2
x + b

2
y + c

2
) = 0

Which represents the family of all lines passing through the point of intersection

of the given lines.
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3.8 KEY TERMS

•••• Coordinate geometry: It is the branch of mathematics that deals with the

evaluation of properties of plane figures by means of their location, in terms

of their coordinates, on a coordinate plane.

•••• External division of a line: When the point dividing a particular line falls

on the line only when it is extended, it is said to be an external division of

that line.

•••• Intercept: It is the distance between the origin and the points at which a

particular line intersects the two axes.

3.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. a, b, a, b; 2 2 2 2,a b a b+ +

2. 17

3. (– 1, 4/3)

4. (i)   (1, – 4)

        (ii)  (7, 14)

        (iii) (4, 5)

5. (0, – 2)

6. (– 10 – 4)

7.
13 14 17 22

, , ,
3 3 3 3

   
   
   

8. External division – 1: 2

9. (i)   0

        (ii)  b/a

        (iii) 5/2

        (iv)  1

        (v)  –1

10. 1
3 – 5

x y
+ =  or – 1

3 5

x y
=  or 5x – 3y = 15

11. x + 2y – 8 = 0

12. x + y = 8; – 1; 8, 8

13. 8



Coordinate Geometry

NOTES

Self-Instructional Material 181

14. (0, 4 3)±

15. 2 17

16. (i) (4, 8)

(ii) The slopes of the lines joining any two of these three points will have the

same value of that y = 8

17. (i) 17x – 14y + 7 = 10,

       (ii) 13x + 10y + 1 = 0, 2x – 7y + 3 = 0

18. x + y = 11

19. (i)  22

        (ii) 
1

2

20. 1

3.10 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Find the third vertex if two vertices of an equilateral triangle are given to be

(0, 0), (– 4, 3).

2. Find the midpoint of (– a, 0), (4, 0).

3. Prove that A(0, 0), B(10, – 4) C(2, 5) form a right angled triangle.

4. The intercepts of parallel lines are different but the slopes are the same. Can

lines with negative and positive intercepts on the same axis be parallel?

5. Show that (0, 0), (a, 0), 2 2 2 2( – , ), ( – , )a a b b a b b+  are vertices of a

rhombus (a > b). Show that the diagonals are perpendicular.

6. Show that y = 7x + 2, 
1

4
7

y x= +  are perpendicular lines.

Hint. 1 2

1
7 – 1

2
m m = × =

7. Show that (3, – 2), (4, 3), (– 1, 1), (– 2, – 4) are the vertices of a parallelogram.

Find the lengths of the diagonals.

(Hint: Find the slopes of opposite pairs of sides and show they are parallel

and equal.)

8. Show that the lines 3x + by + 5 = 0, cx – 3y – 2 = 0 are perpendicular, if

3c – 3b = 0 or b = c.
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9. Show that if vertex C in a triangle is the origin (0, 0), the area of the triangle

is 
1

2
(x

1
y

2
 – x

2
y

1
).

10. Show that the area of a quadrilateral A(x
1
, y

1
), B(x

2
, y

2
) C(x

3
, y

3
), D(x

4
, y

4
)

is 
1

2
(x

1
y

2
 – x

2
y

1
 + x

2
y

3
 – x

3
y

2
 + x

3
y

4
 – x

4
y

3 
– x

4
y

1 
– x

1
y

4
) (sum of two

triangles).

11. Show that points (0, 2), (1, 5), (– 1, – 1) are collinear.

Long-Answer Questions

1. Given A(– 1, – 1), B(3, – 3), C(2, 3), find the lengths of the sides and the

medians of ∆ABC. Also, find the coordinates of the midpoints of  the medians.

2. The segments joining the midpoints of the sides of a quadrilateral form a

parallelogram. Find the lengths of sides joining the midpoints.

(See the following figure).

( , )x y1 1

( , )x y22

( )x y3 3, 

( , )x y4 4

X

Y

   3.  Prove that the diagonals of a square are equal.

4. Prove that the diagonals of a parallelogram bisect each other.

5. Show that the distance from (1, 1) to 
2 2

2 2

2 (1 – )
,

1 1

t t

t t

 
 

+ + 
 is same for all values

of t. (Show that the answer does not contain t.)

6. Prove that the slope of each of the following lines is zero.

(i) y = 0, (ii) y = k, (iii) y = – k.

(Note that y = 0 is the equation of y-axis).

 7. Prove that the slope of lines (i) x = 0, (ii) x = k, (iii) x = – k is infinite.

(Note that x = 0 is the equation of y-axis)
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8. Find the slopes of the following lines:

(i)  
2 1

– 4
3 2

x
y

+
= (ii) – 3 6x y =

(iii) 3 12x y+ = (iv) y – 12x = 0

(v)  x = y (vi) 2 6y x=

Are there any parallel or perpendicular lines among these?

Draw the graphs and check.

9. Prove that the following pairs of lines are parallel:

(i)   y = 3x + 7 (ii) y = 7x (iii) y = x

y = 3x – 5 y = 
1

7
2

x + y  = x + a

(iv) ax + by + c  = 0 (v) x = k (vi) y = 5

bx + k = 

2
b

y
a

x = 0 y = – 5.

10. Prove that the following pairs of lines are perpendicular:

(i) y = 3x + 7 (ii) y = 2x (iii) 1
x y

a b
+ =

     x = 5 – 3y
3

–
4 2

x
y = ax – by = 10

(iv) ax + by + c = 0 (v) y = x

       ay = bx x = – y.

11. (i) Prove that the lines joining the midpoints of opposite sides of a quadrilateral

bisect each other.

(ii) Prove that the diagonals of a rhombus are perpendicular.

12. Show that 
1 2

1 2, , ,
c ax c ax

x x
b b

+ +   
   
   

 are points on the line ax + by = 0.

(Substitute each point in the equation and see if it is satisfied).

3.11  FURTHER READING

Khanna, V.K, S.K. Bhambri, C.B. Gupta and Vijay Gupta. Quantitative

Techniques. New Delhi: Vikas Publishing House.

Khanna, V.K, S.K. Bhambri and Quazi Zameeruddin. Business Mathematics.

New Delhi:Vikas Publishing House.
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UNIT 4 QUADRATIC EQUATIONS

Structure

4.0 Introduction

4.1 Unit Objectives

4.2 Quadratric Equation: Basics
4.2.1 Method of Solving Pure Quadratic Equations

4.3 Solving Quadratic Equations
4.3.1 Method of Factorization

4.3.2 Method of Perfect Square

4.4 Discriminant Method and Nature of Roots

4.5 Relation of the Roots
4.5.1 Symmetric Expression of Roots of a Quadratic Equation

4.5.2 Simultaneous Equations in Two Unknowns

4.5.3 Simultaneous Equations in Three or More than Three Unknowns

4.6 Summary

4.7 Key Terms

4.8 Answers to ‘Check Your Progress’

4.9 Questions and Exercises

4.10 Further Reading

4.0 INTRODUCTION

In mathematics, a quadratic equation is a polynomial equation of the second degree.

The general form is

Ax2 +bx+c=0

where x represents a variable, and a, b, and c, constants, with a ≠ 0.

(If a = 0, the equation is a linear equation.)The three constants—a, b and c— are

called the quadratic coefficient, the linear coefficient and the constant term or free

term, respectively. The term ‘quadratic’ is derived from quadratus, which in Latin

means ‘square’. Quadratic equations can be solved by using factorization method,

perfect square method and discriminate method. This unit describes all these

methods of solving quadratic equations.

A quadratic equation with real or complex coefficients has two solutions,

called roots. These two solutions may or may not be distinct, and they may or may

not be real. This unit will introduce you to the realation of roots of a quadratic

equation.

4.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Understand the basics of quadratic equations

• Solve quadratic equations by using factorization and perfect square methods
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• Understand the nature of roots

• Comprehend the relation of the roots

4.2 QUADRATRIC EQUATION: BASICS

An equation of degree 2 is called a quadratic equation.

Note: In this section, we shall mainly deal with quadratic equations having rational

numbers as coefficients.

There are two types of quadratic equations: (1) Pure and (2) Affected.

A quadratic equation is called pure if it does not contain single power of x. In

other words, in a pure quadratic equation, coefficient of x must be zero. Thus a

pure quadratic equation is of the type ax
2 + b = 0 with a ≠ 0.

A quadratic equation which is not pure is called an affected quadratic

equation.

Thus, the most general form of an affected quadratic equation is

ax
2
 + bx + c = 0, with ab ≠ 0. (Recall that ab ≠ 0 ⇔ a ≠ 0 and b ≠ 0).

Root. A complex number α is called a root of ax
2 + bx + c if aα2 + bα + c

= 0.

4.2.1 Method of Solving Pure Quadratic Equations

Let ax
2 + b = 0 be a pure quadratic equation. This implies

ax
2 = – b ⇒ x2 = −

b

a
 ⇒ x = ±

−b

a

It is clear that the roots of ax
2 + b are real if and only if a and b are of opposite

signs.

Example 4.1: Solve 9x
2
 – 4 = 0.

Solution: Clearly, 9x
2 = 4 ⇒ x2 = 

4

9
⇒ x = 

2

3
± .

4.3 SOLVING QUADRATIC EQUATIONS

Note: Since a pure quadratic equation is a particular case of ax2 + bx + c = 0.

All these methods are applicable to pure equations also. All that we have to do is

to just put b = 0 to get the solution of a pure equation.

4.3.1 Method of Factorization

If the expression ax
2 + bx + c can be factored into linear factors then each of the

factors, put to zero, provides us with a root of the given quadratic equation.

Thus, if ax
2 + bx + c = a(x – α)(x – β), then the roots of ax

2 + bx + c = 0 are

α and β.
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Example 4.2: Solve x
2
 – 5x + 6 = 0.

Solution: Clearly, x2 – 5x + 6 = 0

⇒ (x – 2)(x – 3) = 0

⇒x – 2 = 0 or x – 3 = 0

⇒ x = 2 or x = 3

Hence, roots of given equation are 2 and 3.

4.3.2 Method of Perfect Square

This method is made clear by the following steps. Let ax
2 + bx + c = 0 be the

given equation.

Step 1. Divide both sides of the equation by a to obtain

x
b

a
x

c

a

2 + +  = 0

(since a ≠ 0, we are justified in division by a)

Step 2. Transpose the constant term (i.e., the term independent of x) on RHS

to get,

x
b

a
x

2 +  = −
c

a

Step 3. Add 
b

a

2

24
 to both the sides.

Thus, we have x
b

a
x

b

a

2
2

24
+ + = 

b

a

c

a

2

24
−

Or x
b

a
+
F
HG

I
KJ2

2

= b ac

a

2

2

4

4

−

This is a pure equation in the variable x
b

a
+

2
.

So, the solution is x
b

a
+

2
= 

± −b ac

a

2 4

2

Or, x = 
− ± −b b ac

a

2 4

2

Note: This method is useful particularly when ax
2 + bx + c cannot be factored

into linear factor easily.

Example 4.3: Solve 2x
2
 + 3x – 1 = 0.

Solution: In this case a = 2, b = 3, c = – 1

Hence, roots are x = 
− ± − −3 3 4 2 1

2 2

2 ( )( )

.
 = 

− ±3 17

4
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4.4 DISCRIMINANT METHOD AND NATURE OF

ROOTS

The roots of ax
2 + bx + c = 0 are given by 

− ± −b b ac

a

2 4

2
. The expression inside

the radical sign, i.e., b2 – 4ac V a, b, c ∈ R is called discriminant.

Case 1. b
2 – 4ac > 0, i.e., b2 > 4ac.

In this case b ac
2 4−  is a real number. Hence the two roots of the given

equation are unequal and real.

Case 2.  b2 – 4ac = 0, i.e., b2 = 4ac.

In this case both the roots are real and equal (each equal to – b/2a).

Case 3. b2 – 4ac < 0, i.e., b2 < 4ac.

In this case b ac
2 4−  is an imaginary number and so both the roots are com-

plex and unequal.

Example 4.4: Solve 
3 3

2 2

x + x
+

x + x

−

−
 = 

2 3

1

x

x

−

−
.

Solution: Given equation is equivalent to

( + +

+
+

− −

−

x

x

x

x

2 1

2

2 1

2

) ( )
=

2 1 1

1

( )x

x

− −

−

⇒ 1
1

2
1

1

2
+

+
+ −

−x x
= 2

1

1
−

−x

⇒
x x

x

− − −

−

2 2

42
= −

−

1

1x

⇒
−

−

4

42
x

= −
−

1

1x

⇒ 4x – 4 = x
2 – 4

⇒ x
2 – 4x = 0 ⇒ x(x – 4) = 0 ⇒ x = 0 or 4.

Hence, the roots of the given equation are 0 and 4.

Example 4.5: Solve x
4
 – 13x

2
 + 36 = 0.

Solution: This is not a quadratic equation in x, but on putting x = t2, we get a

quadratic in t, namely t2 – 13t + 36 = 0.

Roots of this equation are given by (t – 4)(t – 9) = 0.

Thus, t = 4 or t = 9. In other words, x2 = 4 or x2 = 9. Hence x = ± 2 or ± 3.

Consequently, roots of given equation are ± 2, ± 3.

Example 4.6: Solve (x + 1)(x + 3)(x + 4)(x + 6) = 72.

Solution: Rearrange the factors on the LHS so as to have the sum of constants in

first two factors same as in the case of other two factors.
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Since 1 + 6 = 3 + 4, we get (x + 1)(x + 6)(x + 3)(x + 4) = 72

Or, (x2 + 7x + 6)(x2 + 7x + 12) = 72

Now put,   x
2 + 7x = t to obtain

(t + 6)(t + 12) =72

⇒ t
2 + 18t + 72 =72

⇒ t(t + 18) =0 ⇒ t = 0 or t = – 18

Hence, x
2 + 7x =0 or x

2 + 7x + 18 = 0

First, quadratic has 0 and – 7 as its roots and the second quadratic has roots

given by

− ± −7 49 72

2
, i.e., 

− ± −7 23

2

Example 4.7: Solve 
2 25 6 8 5 6 7x x + x x− − − −  = 1

Solution: Consider  (5x
2 – 6x + 8) – (5x

2 – 6x – 7) = 15

Divide this equation by the given equation.

We get,

2 2
5 6 8 5 6 7x x x x− + + − −  = 15

Adding this equation to the given equations, we obtain,

2 5 6 82
x x− + =16

⇒ 5x
2 – 6x + 8 =64

⇒ 5x
2 – 6x – 56 =0

⇒ x = 
6 36 1120

10

± +
 = 

6 1156

10

±

⇒ x = 
6 34

10

±
⇒ x = 4 or − 2

4

5
.

Example 4.8: Solve x
4
 – 5x

3
 + 15x + 9 = 0.

Solution: Note that in this equation

x
4 – 5x (x2 – 3) + 9 = 0

(x4 – 6x
2 + 9) – 5x(x2 – 3) + 6x

2 = 0

         (x2 – 3)2 – 5x(x2 – 3) + 6x
2

Put x2 – 3 = t.

Thus, the given equation is reduced to t2 – 5xt + 6x
2 = 0

This has the roots t = 2x and t = 3x.

In other words, we have two quadratic equations,

x
2 – 3 = 2x and x

2 – 3 = 3x

The roots of former equation are – 1 and 3 and those of the latter are 
3 21

2

±
.
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Example 4.9: Solve 5x
 + 52–x

 = 26.

Solution: Multiplying the given equation by 5x we obtain

52x + 25 = 26.5x

Or, 52x – 26.5x + 25 = 0

Put 5x = t to obtain the quadratic equation t2 – 26t + 25 = 0.

The roots of this equation are t = 1 or t = 25.

Then, 5x = 1 = 50 ⇒ x = 0

Or, 5x = 25 = 52  ⇒ x = 2

Hence, x = 0 or 2.

Example 4.10: Solve 3x – 4 = 2
2 2 2x x− + .

Solution: Squaring both sides to eliminate the radical sign, we get

9x
2 – 24x + 16 = 2x

2 – 3x + 2

Or 7x
2 – 21x + 14 = 0

Or, x
2 – 3x + 2 = 0

⇒   x = 1 or 2

Hence, the roots of given equation are 1 and 2.

Example 4.11: Solve x
4 + x3 – 4x

2 + x + 1 = 0.

Solution: In equations of such type if the terms are arranged according to de-

scending powers of x, the coefficients of terms equidistant from first and last term

are equal or differ in sign. Equations of this type are called reciprocal equations.

We collect equidistant terms together.

Thus, the given equation is equivalent to

(x4 + 1) + (x3 + x) – 4x
2 = 0

Divide by x2 to obtain

x
x

x
x

2

2

1 1
4+

F
HG

I
KJ + +
F
HG
I
KJ −  = 0

Now, put x
x

+
1

 = t. Then x
x

2

2

1
+  = t2 – 2

We get, t
2 – 2 + t – 4 = 0

Or, t
2 + t – 6 = 0 ⇒ t = – 3 or 2

In other words, x
x

+
1

 = –3 or 2

i.e., x
2 + 3x + 1 = 0 or x

2 – 2x + 1 = 0

⇒ x = 
− ±3 5

2
or x = 1, 1

Hence, the roots of given equation are

1 1
3 5

2
, ,

− ±
.
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Example 4.12: Solve the equation

x
2 – 6x + 9 = 4 6 62

x x− +

Solution: Putting x2 – 6x + 6 = t in the given equation, we get

t + 3 = 4 t

Or, t
2 + 6t + 9 = 16t

Or, t
2 – 10t + 9 = 0

⇒ (t – 1)(t – 9) = 0

⇒ t = 1 or t = 9

⇒ x
2 – 6x + 6 = 1 or x

2 – 6x + 6 = 9

⇒ x
2 – 6x + 5 = 0 or x

2 – 6x – 3 = 0

⇒ (x – 1)(x – 5) = 0 or x = 
6 36 4 3

2

± − −( )

⇒ x = 1, 5 or x = 
6 4 3

2

±

⇒ x = 1, 5 or 3 ± 2 3 .

Example 4.13: Solve 
x

x

x

x1

1

−
+

−
 = 2

1

6
.

Solution: Putting 
x

x1 −
 = t2, we get

          t
t

+
1
 = 

13

6
⇒ 6t

2 + 6 = 13t

⇒ 6t
2 – 13t + 6 = 0

⇒ 6t
2 – 4t – 9t + 6 = 0

⇒ (2t – 3)(3t – 2) = 0

⇒ t = 
3

2
or

2

3

Now,   t = 
3

2
⇒ 

x

x1 −
 = 

9

4
⇒ 4x = 9 – 9x

⇒ 13x = 9 ⇒ x = 
9

13

When,     t =
2

3
⇒ 

1

x

x−
 = 

4

9
 ⇒ 9x = 4 – 4x

⇒ 13x = 4 ⇒ x = 
4

13

So,      x = 
4

13
or

9

13
.
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Example 4.14: Find the value of 6 6 6+ + + ... ∞ .

Solution: Let x = 6 6 6+ + + ∞...  = 6 + x ⇒ x
2 = 6 + x

    ⇒ x
2 – x – 6 = 0

    ⇒ (x – 3)(x + 2) = 0

    ⇒ x = 3 or – 2.

Example 4.15: Solve 
x p

q

x q

p

−
+

−
 = 

q

x p

p

x q−
+

−
.

Solution: Given equation can be rewritten as

x p q p x q

q x p x q p

− −
− = −

− −
⇒

( )

( )

x p q

q x p

− −

−

2 2

 = 
p x q

p x q

2 2− −

−

( )

( )

⇒
( )( )

( )

x p q x p q

q x p

− − − +

−

                                    = 
( )( )

( )

p x q p x q

p x q

+ − − +

−

Either x – p – q = 0, i.e., x = p + q

Or, we get

x p q

q x p

− +

−( )
= 

− + −

−

( )

( )

p x q

p x q

Simplifying, we get ( p + q)x2 – ( p
2 + q2)x = 0

⇒         x = 0 or x = 
p q

p q

2 2+

+

Hence, x = 0 or
p q

p q

2 2+

+
or p + q.

Example 4.16: Solve x + x  = 
6

25
.

Solution: Putting x  = t, we get

t
2 + t = 

6

25
⇒ 25t

2 + 25t – 6 = 0

⇒ t = 
− ± − −25 625 4 6 25

50

( )( )

= 
− ± +25 625 600

50

= 
− ±25 1225

50
 = 

25 35

50

− ±

= 
10

50
or

− 60

50

= 
1

5
or

− 6

5

Then, x = t2 = 
1

25
or

36

25
.
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Example 4.17: Solve x
2/3

 + x
1/3

 – 2 = 0.

Solution: Put x1/3 = t, to obtain

t
2 + t – 2 = 0 ⇒ (t + 2)(t – 1) = 0

⇒ t = 1 or – 2

In case t = 1,   we get x1/3 = 1 ⇒ x = 1

In case t = –2, we get x1/3 = – 2 ⇒ x = – 8

Hence, x = 1 or – 8.

Example 4.18: Solve x
2
 + x + 10 2 3 16x + x+  = 2(20 – x).

Solution: Given equation can be written as

x x x x
2 23 40 10 3 16+ − + + +  = 0

Put, x x
2 3 16+ +  = t

Then,   x2 + 3x = t2 – 16

So, the given equation simplifies to

t
2 – 16 – 40 + 10t = 0

Or, t
2 + 10t – 56 = 0

⇒ (t + 14)(t – 4) = 0

⇒ t = 4 or – 14

Now,    t = 4⇒ x2 + 3x + 16 = 16

⇒ x2 + 3x = 0 ⇒ x = 0 or – 3

While, t = –14 ⇒ x2 + 3x + 16 = 196

⇒ x2 + 3x – 180 = 0

⇒ x = 
− ± +3 9 720

2

= 
− ±3 729

2

= 
− ±3 27

2
 = 12 or – 15

Hence, x ⇒ 0, – 3, 12, – 15.

Example 4.19: Solve 2 23 18 3 4 6x x x− + − −  = 4x.

Solution: Putting 3 4 62
x x− +  = t, we get

3x
2 – 4x = t2 + 6

So, the given equation is reduced to

t
2 + 6 – 18 + t = 0 ⇒ t

2 + t – 12 = 0

⇒ (t + 4)(t – 3) = 0

⇒ t = 3 or – 4
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Now t = 3 ⇒ 3x
2 – 4x – 6 = 9 ⇒ 3x

2 – 4x – 15 = 0

⇒ 3x
2 – 9x + 5x – 15 = 0

⇒ (x – 3)(3x + 5) = 0

⇒ x = 3 or – 5
3

Also, t = – 4 ⇒3x
2 – 4x – 6 = 16 ⇒ 3x

2 – 4x – 22 = 0

⇒  x = 
4 16 4 3 22

6

± − −. ( )

= 
4 16 264

6

± +
 = 

4 280

6

±

⇒ x =
2 70

3

±

Hence, x = 3, −
5

3
, 

2 70

3

±
.

Example 4.20: Solve 
2 2

2 2

1 1

1 1

+ x + x

+ x x

−

− −
 = 3.

Solution: Simplifying given equation, we get

1 12 2+ + −x x  = 2 2
3 1 3 1x x+ − − ⇒ 2 1 2+ x  = 4 1 2− x

⇒ 1 2+ x  = 2
2 1 x−

⇒ 1 + x2 = 4(1 – x2)

⇒ 5x
2 = 3

⇒ x2 = 
3

5

⇒ x = ±
3

5
.

CHECK YOUR PROGRESS

  Solve the following equations:

1. x2 – 8x – 48 = 0

2. 3x2 + 10x + 3 = 0

3.
77 2

3
21

( )x

x
x

−

+
−  = 7

7 49

3
+

−

+

x

x

4.

215 16

4

x −
– 7x – 3
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4.5 RELATION OF THE ROOTS

4.5.1 Symmetric Expression of Roots of a Quadratic Equation

We first prove that a quadratic equation cannot have more than two roots.

Suppose α, β, γ are three roots of ax + bx + c = 0.

Since α is a root of ax
2 + bx + c = 0, x – α is a factor of ax

2 + bx + c (by

Remainder Theorem). Similarly, x – β and x – γ are factors of ax
2 + bx + c.

So, ax
2 + bx + c = k(x – α)(x – β)(x – γ), where k is a non-zero constant.

Now left hand side is a polynomial of degree 2, whereas right hand side is a

polynomial of degree 3 but two polynomials can be equal only when their degrees

are equal and coefficients of equal powers of x are equal. Thus, we have a

contradiction. Hence, a quadratic equation cannot have more than two roots.

Definition: An equation f (x) = 0 is called an identity if it is satisfied by all

values of x.

For example, (x – 2)2 – x2 + 4x – 4 = 0 is an identity while x2 – 6x + 5 = 0

is not an identity, as x = 2 does not satisfy x2 – 6x + 5 = 0 (22 – 6.2 + 5 = 9 – 12=

–3 ≠ 0).

Notation: An identity is denoted by ≡.

Thus, (x – 2)2 – x2 + 4x – 4 ≡ 0.

Theorem. ax
2
 + bx + c = 0 is an identity if and only if a = b = c =0.

Proof: In case a = b = c = 0, given equation reduces to

0.x2 + 0.x + 0 = 0

Which is clearly satisfied by all values of x.

Conversely, let ax
2 + bx + c = 0 be satisfied by all values of x. Take three

distinct numbers α, β, γ. In particular, the given equation must be satisfied by

 x = α, β and γ.

i.e., aα2 + bα + c = 0 ...(4.1)

aβ2 + bβ + c = 0 ...(4.2)

aγ2 + bγ + c = 0 ...(4.3)

Equations (4.1) and (4.2) give, on subtraction

a(α2 – β2) + b(α – β) = 0

⇒ a(α + β) + b = 0 as α ≠ β. ...(4.4)

Further, equations (4.2) and (4.3) yield, on subtraction

  a(β2 – γ2) + b(β – γ) = 0

⇒ a(β + γ) + b = 0 as β ≠ γ. ...(4.5)

Subtract equation (4.5) from equation (4.4) to get a(α – γ) = 0

⇒ a = 0 as α ≠ γ

Then equation (4.4) ⇒ b = 0 and (1) ⇒ c = 0.

Hence, equation the theorem follows.
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Coming back to quadratic equation ax
2 + bx + c = 0

(i.e., α ≠ 0), we see that if α, β are its roots, then

ax
2 + bx + c ≡ a(x – α)(x – β)

(a – a)x2 + [b + a(α + β)]x + c – aαβ ≡ 0

By previous theorem this means

b = – a(α + β) or α + β = –
b

a

And c = aαβ   or αβ = 
c

a

Thus, we get the following relation between roots and coefficients

α + β = −
b

a

αβ =
c

a

Aliter: The above relations can also be found as under:

Take, α =
− + −b b ac

a

2 4

2
and β = 

− − −b b ac

a

2 4

2

Then, α + β =
2

2

b

a

−
 = 

−b

a

And αβ =
b b ac

a

2 2

2

4

4

− −( )
 = 

4

4 2

ac

a

 = 
c

a

The above relations imply that

ax
2 + bx + c = 0

is same as ax – a(α + β)x + aαβ = 0 or

   x
2 – (α + β)x + αβ = 0 as a ≠ 0

This gives us the method of construction of a quadratic equation whose roots

are given.

The required quadratic will be

x
2 – (sum of two roots)x + (product of two roots) = 0

Definition: Any expression involving α and β is called a symmetric function

of α and β, if it remains unchanged when α and β are interchanged.

For instance, α 2 + β 2,   αβ,   
3 3

2 2α β
, α β αβ

αβ

+
+

are all symmetric functions of α and β, where α3 – β is not a symmetric function

since in general α3 – β need not be equal to β3 – α.

For example, if α = 1, β = 2; α3 – β = 1 – 2 = – 1 while β3 – α = 8 – 1 = 7.

With the help of relation α + β = −
b

a
 and αβ = 

c

a
 we can evaluate symmetirc

function of α and β. The method is best illustrated with the help of examples.
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Example 4.21:

        (i) If α and β are the roots of x
2
 – px + q = 0, form an equation whose roots

are αβ + α + β and αβ – α – β.

(ii) If α and β are the roots of 2x
2
 – 4x + 1 = 0, form the equation whose

roots are α2
 + β and β2

 + α.

Solution:

       (i) Let γ = αβ + α + β, and δ = αβ – α – β

The equation whose roots are γ and δ is

x
2 – (γ + δ)x + γδ = 0

Now α, β are roots of x2 – px + q = 0

Implies that, α + β = −
−( )p

1
 = p

And αβ= 
q

1
 = q

This further yields that

γ = αβ + α + β = q + p, and δ = αβ – α – β = q – p.

Hence, the required equation is

x
2 – (q + p + q – p)x + (q + p)(q – p) = 0

i.e., x
2 – 2qx + q2 – p2 = 0

(ii) α + β = 
4

2
 = 2

αβ = 
1

2

Now, s
1

= α2 + β + β2 + α

= α2 + β2 + α + β

= (α + β)2 – 2αβ + α + β

= 4 – 1 + 2 = 5

And s
2

= (α2 + β)(β2 + α)

= α2β2 + α3 + β3 + αβ

= 
1 1

(α β) 3αβ (α β)
4 2

3+ + + − +

= 
3

4
8

3

2
2+ − ( )

= 5
3

4
+  = 

23

4
.

Hence, the required equation is

x
2 – 5x + 

23

4
= 0

Or 4x
2 – 20x + 23 = 0.
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Example 4.22: α, β are roots of 2x
2
 + 3x + 7 = 0. Find the values of 

α β

β α
+

and α3 + β3
.

Solution: α + β = −
3

2
 and αβ = 

7

2

Now,
α β

+
β α

= 
2 2
α + β

αβ
= 

2
(α + β) – 2 αβ

αβ

= 

9

4
2

7

2
7

2

− ⋅

= 

9

4
7

7

2

−
 = 

2

7

19

4

−F
HG
I
KJ  = 

−19

14

Again, α3 + β3 = (α + β)(α2 – αβ + β2)

= (α + β)[(α + β)2 – 3αβ]

=
3 9 7

3
2 4 2

   
− − ⋅   
   

= −
F
HG
I
KJ −
F
HG

I
KJ

3

2

9

4

21

2

= −
F
HG
I
KJ

−F
HG
I
KJ

3

2

33

4
 = 

99

8
.

Example 4.23: If α, β are the roots of ax
2
 + bx + c = 0, find the equation with

roots aα + bβ and bα + aβ.

Solution: We have

(aα + bβ) + (bα + aβ) = (a + b)α + (a + b)β

= (a + b)α + (a + b)β

= (a + b)(α + β)

= ( )a b
b

a
+ −
F
HG
I
KJ  = − +

b

a
a b( )

Also, (aα + bβ) (bα + aβ) = abα2 + abβ2 + (a2 + b2)αβ

= ab(α2 + β2) + (a2 + b2)αβ

= ab [(α + β)2 – 2αβ] + (a2 + b2)αβ

= ab
b

a

c

a
a b

c

a

2

2

2 22
−

F
HG

I
KJ + +( )

= 
b b ac

a

a b c

a

( ) ( )2 2 22−
+

+

= 
b b ac a b c

a

( ) ( )2 2 22− + +

Hence, the required equation is
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x
b

a
a b x

b b ac a b c

a

2
2 2 22

+ + +
− + +

( )
( ) ( )

 = 0

Or, ax
2 + b(a + b)x + b(b2 – 2ac) + (a2 + b2)c = 0

Or, ax
2 + b2

x + abx + b3 + c(a2 + b2 – 2ab) = 0

Or, (ax + b2)x + b(ax +b
2) + c(a – b)2 = 0

⇒ (ax + b2)(x + b) + c(a – b)2 = 0

Example 4.24: If the roots of ax
2
 + bx + c = 0 are in the ratio p : q, prove that

ac(p + q)2
 = b

2
pq.

Solution: We know that α + β = −
b

a
 and αβ = 

c

a

By hypothesis,
α

β
= 

p

q

We are to eliminate α, β from these three relations.

αβ = 
c

a
 and 

α

β
 = 

p

q
⇒ α2 = 

pc

aq

And
αβ

α β/
= 

c

a

p

q

F
H
I
K ⇒ β2 = 

cq

ap

Again, α + β = −
b

a
⇒ α2 + β2 + 2αβ = 

b

a

2

2

So, we get

pc

aq

cq

ap

c

a
+ +

2
= 

b

a

2

2

Or,
( )p q c cpq

apq

2 2 2+ +
= 

b

a

2

2
⇒ a(p2 + q2)c + 2capq = b2

pq

⇒ ac(p2 + q2 + 2pq) = b2
pq

⇒ ac(p + q)2 = b2
pq.

Example 4.25: If α and β are the roots of ax
2
 + bx + c = 0, form the equation

whose roots are α2
 + β2

 and α–2
 + β–2

.

Solution: Here, α + β = −
b

a
 and αβ = 

c

a

Now α2 + β2 = (α + β)2 – 2αβ = 
b

a

c

a

2

2

2
−  = 

b ac

a

2

2

2−

And α– 2 + β– 2 = 
2 2

1 1
+

α β
 = 

2 2

2 2

α + β

α β
 = 

2

2

2

2

2b ac

a

c

a

−

 = 
b ac

c

2 − 2

2

So, the sum of new roots = 
b ac

a

b ac

c

2

2

2

2

2 2−
+

−
 = 

( )( )b ac c a

c a

2 2 2

2 2

2− +

And product of new roots = 
( )b ac

a c

2 2

2 2

2−
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Hence, the required equation is

2 2 2 2 2
2

2 2 2 2

( 2 )( ) ( 2 )b ac c a b ac
x x

c a a c

− + −
− +  = 0

Or, a
2
c

2
x

2 – (b2 – 2ac)(c2 + a2)x + (b2 – 2ac)2 = 0

Example 4.26: For what values of m will the equation

(m + 1)x2
 + 2(m + 3)x + (2m + 3) = 0 have equal roots?

Solution: As shown in section 5.5, the equation will have equal roots, if and

only if

[2(m + 3)]2 = 4(m + 1)(2m + 3)

Or, m
2 + 6m + 9 = 2m

2 + 5m + 3

Or, m
2 – m – 6 = 0

Or, (m – 3)(m + 2) = 0 or m = 3 or – 2.

Example 4.27: Show that (x – a)(x – b) = h2 have real roots.

Solution: Given equation can be simplified to

x
2 – (a + b)x + ab – h

2 = 0

Discriminant, = (a + b)2 – 4(ab – h2)

= (a + b)2 – 4ab + 4h
2

= (a – b)2 + 4h
2

Which is always a positive quantity.

Hence, the roots of given equation are always real.

CHECK YOUR PROGRESS

5. If p, q are the roots of 3x2 + 6x + 2 = 0, form an equation whose roots are

− p

q

2

and 
−q

p

2

6. Find k if the roots of 2x2 + 3x + k = 0 are equal.

7. If α and β are the roots of ax2 + bx – c = 0, form an equation whose roots

are

1 1
,

α βa b a b+ +

8. Form an equation whose roots are squares of the roots of

ax2 + bx + c = 0.

4.5.2 Simultaneous Equations in Two Unknowns

In this section we will consider solutions of linear and non-linear simultaneous

equations in two unknowns. There are several techniques for solving such prob-

lems and we shall illustrate some of them with the help of examples.
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Example 4.28: Solve 4x – 3y = 1, 12xy + 13x
2
 = 25

Solution: From 4x – 3y = 1,   y = 
4 1

3

x −

Substituting the value of y in 12xy + 13x
2 = 25, we get

12
4 1

3
13 2

x
x

x
−F

HG
I
KJ +  = 25 ⇒ 16x

2 – 4x + 13x
2 = 25

⇒ 29x
2 – 4x – 25 = 0

⇒ (29x + 25)(x – 1) = 0

⇒ x = 1 or −
25

29

Then, y = 
4 1

3

x −
 gives that either y = 1 or −

43

29
. Hence, the required solution

is x = 1, y = 1

Or, x = −
25

29
, y = −1

14

29
.

Example 4.29: Solve x2
 + y

2
 = 185, x – y = 3.

Solution: Now, (x – y)2 = x2 + y2 – 2xy ⇒ 9 = 185 – 2xy

⇒ 2xy = 176 ⇒ xy = 88

Again, (x + y)2 = (x – y)2 + 4xy ⇒ (x + y)2 = 9 + 352 = 361

x + y = ± 19

Taking +ve sign, we get

x – y = 3, x + y = 19 and so x = 11, y = 8

Taking –ve sign, we get

x – y = 3, x + y = – 19 and so x = – 8, y = – 11

Hence, the required solution is x = 11, y = 8

Or, x = – 8, y = – 11

Example 4.30: Solve 2x + 3y = 5, xy = 1.

Solution: Since xy = 1, we get 6xy = 6, i.e., 2x . 3y = 6.

Now, we have 2x + 3y = 5 and 2x . 3y = 6

As (2x – 3y)2 = (2x + 3y)2 – 4.2x.3y, we get

(2x – 3y)2 = 25 – 24 = 1 ⇒ 2x – 3y = ± 1

Taking +ve sign, we obtain 2x + 3y = 5, 2x – 3y = 1

⇒ x =
3

2
, y = 

2

3
.

Taking –ve sign, we obtain  2x + 3y = 5, 2x – 3y = – 1

⇒                  x = 1, y = 1.

Hence, required solution is x = 1, y = 1

x = 1
1

2
, y = 

2

3
.
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Example 4.31: Solve x
3
 + y

3
 = 4914, x + y = 18.

Solution. We know that (x + y)3 = x3 + y3 + 3xy(x + y)

This gives that (18)3 = 4914 + 3xy . 18

Or, 324 = 273 + 3xy ⇒ 108 = 91 + xy ⇒ xy = 17.

Now, x + y = 18, xy = 17

Solving by the method discussed in previous example, we get

x = 1, y = 17  or   x =  17, y = 1

Example 4.32: Solve x y xy+ +  = 14

x
2
 + y

2
 + xy = 84

Solution: x2 + y2 + xy = (x + y)2 – xy = ( )( )x y xy x y xy+ + + −

⇒ 84 = 14( )x y xy+ − ⇒ x y xy+ −  = 6

But, x y xy+ +  = 14

Hence, x + y = 10, xy  = 4 or xy = 16 ⇒ y = 
16

x

Putting values of y in x + y = 10 we get, x = 8, y = 2

Or,           x = 2, y = 8.

Example 4.33: (Homogenous Equations)

Solve x
2
 + xy + 4y

2
 = 6

3x
2
 + 8y

2
 = 14

(Note in such equations that sum of powers of x and y in each term is same.)

Solution: Both the equations can be re-written as

x
y

x

y

x

2
2

2
1

4
+ +
F
HG

I
KJ  = 6 and x

y

x

2
2

2
3

8
+
F
HG

I
KJ  = 14.

Divide first equation by second equation and then put 
y

x
 = m.

Thus, we get
1 4

3 8

2

2

+ +

+

m m

m
= 

3

7

⇒ 28m
2 + 7m + 7 = 9 + 24m

2

⇒ 4m
2 + 7m – 2 = 0

⇒ (m + 2)(4m – 1) = 0

⇒ m = – 2 or 1/4

In first case, y = – 2x, or substituting this value of y in first of the given equa-

tions, we get

x
2 – 2x

2 + 16x
2 = 6

Or, 15x
2 = 6 ⇒ x = ±

2

5
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Then, y = – 2x ⇒ y = ∓2
2

5

In second case 4y = x; on substituting this value of x in first of the given

equations, we get 16y
2 + 4y

2+ 4y
2 = 6.

Or, 24y
2 = 6 ⇒ y = ±

1

2
 Thus, x = ± 2

Hence, the required solutions are

x = 2, y = 
1

2
; x = – 2, y = −

1

2

x =
2

5
, y = − 2

2

5
; x = −

2

5
, y = 2

2

5
.

Example 4.34: (Symmetrical Equations)

Solve x
4
 + y

4
=257

x + y =5

(In such equations, if we replace x with y and y with x, the equations are

unchanged.)

Solution: Put x = u + v and y = u – v.

By second given equation, we get 2u = 5 or u = 5/2.

Hence, x =
5

2
+ v , y = 

5

2
− v

Substituing these values in first of the given equation and recalling that

   (a + b)4 = a4 + 4a
3
b + 6a

2
b

2 + 4ab
3 + b4, we get

5

2

5

2

4 4

+
F
HG
I
KJ + −
F
HG
I
KJv v = 257

2
5

2
6

5

2

4 2
2 4F

HG
I
KJ +
F
HG
I
KJ +

L
N
MM

O
Q
PP

v v = 257

⇒ 2
625

16

75

2

2 4+ +
F
HG

I
KJv v = 257

⇒ 625 + 600v
2 + 16v

4 = 2056

⇒ 16v
4 + 600v

2 – 1431 = 0

⇒ 16v
4 + 636v

2 – 36v
2 – 1431 = 0

⇒ 4v
2(4v

2 + 159) – 9(4v
2 + 159) = 0

⇒ (4v
2 – 9)(4v

2 + 159) = 0

⇒ v
2 = 

9

4
or v

2 = −
159

4

Thus, v = ±
3

2
or v = ±

−159

2
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Hence, x = 4, y = 1; x = 1, y = 4

x = 
5 159

2

+ −
, y = 

5 159

2

− −

x = 
5 159

2

− −
, y = 

5 159

2

+ −

Example 4.35: Solve x
2
 + y

2
= 29, x – y = 3.

Solution: (x – y)2 = x2 + y2 – 2xy ⇒ 9 = 29 – 2xy

⇒ 2xy = 20

⇒ xy = 10

Now, (x + y)2 = x2 + y2 + 2xy

= 29 + 20 = 49

⇒ x + y = ± 7

Taking +ve sign, we get, 2x = 10 ⇒ x = 5

and y = x – 3 = 2

Taking –ve sign, we get 2x = –4 ⇒ x = –2

And y = x – 3 = – 5

Hence, x = – 2, y = – 5

Or, x = 5, y = 2

Example 4.36: Solve 2x
2
 + 3xy = 26, 3y

2
 + 2xy = 39.

Solution: 2x
2 + 3xy = 26 ⇒ 2 

3y

x
+  = 

26
2

x

And 3y
2 + 2xy = 39 ⇒

3 22

2

y

x

y

x
+  = 

39
2

x

These equations give on division,

2 3

3 22

+

+

m

m m
 = 

26

39
 = 

2

3
, where m = 

y

x

⇒ 6m
2 + 4m = 6 + 9m

⇒ 6m
2 – 5m – 6 = 0

⇒ 6m
2 – 9m + 4m – 6 = 0

⇒ (2m – 3)(3m + 2) = 0

⇒ m = 
3

2
or −

2

3

In case, m = 
3

2
, y = mx = −

3

2
x ,

So, 2x
2 + 3xy = 26

⇒ 2x
2 + 

29

2

x
= 26

⇒ x
2 = 4 ⇒ x = ±2

Then, y = ±3
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In case m = –
2

3
,   y = mx = –

2

3
x

So, 2x
2 + 3xy = 26

⇒ 2x
2 – 2x

2 = 26

⇒ 0 = 26, which is absurd.

Hence the only admissible value of m is 
3

2
 and then the roots are

x = 2, y = 3

x = –2, y = –3.

Example 4.37: By selling a table for Rs 56, gain is as much per cent as its cost in

rupees. What is the cost price?

Solution: Let the cost price be x and gain be y

Then, x + y = 56

Percentage gain = 
100y

x

This is equal to x

i.e., 100y = x2

So, we are to solve

x + y = 56

100y = x2

First equation gives y = 56 – x

Second equation then reduces to

x
2 = 5600 – 100x

Or, x
2 + 100x – 5600 = 0

(x + 140)(x – 40) = 0 ⇒ x = 40 or –140

As x is cost, it must be a positive quantity.

Hence, x = 40

So, cost price of table is Rs 40.

Example 4.38: If the Demand and Supply Laws are respectively given by the

equation

4q + 9p = 48 and p = 
q

9
2+

Find the equilibrium price and quantity.

Solution: In equilibrium, demand = supply, i.e., in the above two equations p, q

stand for same quantities.

We are to solve

4q + 9p = 48

p = 
q

9
2+
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In first equation, substitution of

p = 
q

9
2+

Gives 4q + q + 18 = 48

⇒ 5q = 30 ⇒ q = 6

Then, p = 
q

9
2+  = 

2

3
2+  = 

8

3

Hence, price is 
8

3
 and quantity is 6.

Example 4.39: Solve
x

y

y

x
+  = 

5

2

x + y = 10

Solution:
x

y

y

x
+ = 

5

2

⇒ x + y = 
5

2
xy

⇒ 10 = 
5

2
xy ⇒ xy = 16

Then, (x – y)2 = (x + y)2 – 4xy

= 100 – 64 = 36

⇒ x – y = ± 6

Taking +ve sign and solving with x + y = 10, we get

x = 8 and y = 2

Taking –ve sign and solving with x + y = 10, we obtain

x = 2 and y = 8.

Example 4.40: As the number of units manufactured increases from 4000 to

6000, the total cost of production increases from Rs 22,000 to Rs. 30,000. Find

the relationship between the cost (y) and the number of units made (x), if the

relationship is linear.

Solution: Let the relationship between x and y be given by

ax + by + c = 0

When x = 4000, y = 20,000

So, 4000a + 22,000 b + c = 0 ...(1)

Also when, x = 6,000, y = 30,000

So, 6000a + 30000b + c = 0 ...(2)

Multiply equation (1) by 3 and equation (2) by 2 to obain

12000a + 66000b + 3c = 0

12000a + 60000b + 2c = 0

On subtraction, we get

6000 b + c = 0
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Or b = −
c

6000

Then, equation (1) implies4000
11

3
a

c
c− + = 0

Or, 4000 a = 
8

3

c

⇒ a = 
c

1500

Thus, the linear relation is

1500 6000

c c
x y c− + = 0

Or 4x – y + 6000 = 0

Or y = 4x + 6000.

4.5.3 Simultaneous Equations in Three or More than Three Unknowns

As in the case of two unkowns, there is no fixed method to solve general non-

linear simultaneous equations in three unknowns, however, there are methods for

solving particulars types of such equations, we shall illustrate some of them by

examples.

Note: Cross-multiplication method is applicable only when at least two of the

given equations are of the type

a
1
x + b

1
y + c

1
z = 0 ...(4.6)

And a
2
x + b

2
y + c

2
z = 0 ...(4.7)

Multiplying first equation by b
2
 and second by b

1
 and subtracting the resulting

second equation from resulting first equation,

we get ( a
1
b

2
 – a

2
b

1
)x = – (c

1
b

2
 – c

2
b

1
)z

Or
1 2 2 1

x

b c b c−
 = 

1 2 2 1

z

a b a b−

Similarly, eliminating x from equations (4.6) and (4.7), we get

1 2 2 1

y

c a c a−
 = 

1 2 2 1

z

a b a b−

Thus,         
1 2 2 1

x

b c b c−
 = 

1 2 2 1

y

c a c a−
 = 

1 2 2 1

z

a b a b−
.

Example 4.41: Solve

5x – 4y + z = 0

2x + 5y – 4z = 0

x
2
 – 2y

2
 + z

2
= 0.

Solution: By cross-multiplication,

x

16 5−
 = 

y

2 20− −( )
 = 

z

25 8− −( )
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⇒
x

11
 = 

y

22
 = 

33

z
⇒ x = 

y z

2 3
=  = k (say)

Thus, x = k, y = 2k, z = 3k.

Substituting these values in third equation, we get

k
2 – 8k

2 + 9k
2 = 0 or 2k

2 = 0 ⇒ k = 0

Hence, x = 0,   y = 0,   z = 0.

Example 4.42: Solve 3x + y – 2z = 0, 4x – y – 3z = 0

and         x
3
 + y

3
 + z

3
 = 467.

Solution: By cross-multiplication

x

− −3 2
 = 

8 ( 9)

y

− − −
 = 

z

− −3 4

Or,
x

−5
 = 

y

1
 = 

z

− 7

Or,
x

5
 = 

y

−1
 = 

z

7
 = k (say)

Thus, x = 5k,   y = – k,   z = 7k.

On substitution of these values in third equation, we obtain

125k
3 – k3 + 343k

3 = 467

467k
3 = 467 or k

3 = 1 ⇒ k = 1

Hence, x = 5,   y = – 1,   z = 7.

Example 4.43: Solve x
2
 + xy + y

2
= 13

y
2
 + yz + z

2
= 49

z
2
 + zx + x

2
= 31.

Solution: Subtract second equation from first to obtain

(x2 – z2) + y(x – z) = – 36

Or, (x – z)(x + y + z) = – 36     ...(1)

Similarly, subtracting third equation from second equation, we obtain

(y – x)(x + y + z) = 18 ...(2)

Divide equation (1) by equation (2) to get 
x z

y x

−

−
 = – 2

Or, x – z = – 2y + 2x

Or, 2y = x + z ⇒ y = 
x z+

2

Substitute this value in the given second equation, we get

( ) ( )x z z x z
z

+
+

+
+

2
2

4 2
 = 49

Or, x
2 + z2 + 2xz + 2zx + 2z

2 + 4z
2 = 196

In other words, x
2 + 4xz + 7z

2 = 196
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Also, we are given that x
2 + xz + z2 = 31

Thus, we obtain
x xz z

x xz z

2 2

2 2

4 7+ +

+ +
= 

196

31

Or,
1 4 7

1

2 2

2 2

+ +

+ +

z x z x

z x z x

/ /

/ /
= 

196

31

Put z/x = m

This gives that 31(7m
2 + 4m + 1) = 196(1 + m + m2)

21m
2 – 72m – 165 = 0

⇒ 7m
2 – 24m – 55 = 0

⇒ (m – 5) (7m + 11) = 0

⇒ m = 5 or m = – 11/7

In case m = 5, z = 5x, so y  = 
z x+

2
 = 3x

From first of the given equations, we get

x
2 + 3x

2 + 9x
2 = 13 ⇒ 13x

2 = 13 ⇒ x = ± 1

So, y = ± 3 and z = ± 5.

In case m= −
11

7
, z = −

11

7
x, and so y = 

z x+

2
 = −

2

7
x .

Again, with the help of first of the given equations, we get

x
x

x
2

2
22

7

4

49
− +  = 13

Or 39x
2 = 637 ⇒ x = ±

7

3

Then, y = ∓
2

3
and z = ∓

11

3

Hence, the complete solution is x = 1, y = 3, z = 5.

Or, x = – 1, y = – 3,    z = – 5

Or, x =
7

3
, y = 

− 2

3
, z = 

−11

3

Or, x = −
7

3
, y = 

2

3
, z = 

11

3
.

Example 4.44: Solve x
2
 + xy + xz = 45

y
2
 + yz + yx = 75

z
2
 + zx + zy = 105.

Solution: The given equations are equivalent to

x(x + y + z) = 45

y(x + y + z) = 75

z(x + y + z) = 105

Adding, we get (x + y + z)2= 225

i.e., x + y + z = ± 15
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Hence, x = ± 3, y = ± 5, z = ± 7.

So, the required solutions are x = 3, y = 5, z = 7

Or, x = – 3, y = – 5, z = – 7.

Example 4.45: Solve xyz = 231

xyu = 420

xzu = 660

yzu = 1540.

Solution: Multiplying all the given equations, we get

x
3
y

3
z

3
u

3 = 231 × 420 × 660 × 1540

                   = 3 × 7 × 11 × 22 × 3 × 5 × 7 × 22 × 3 × 5 × 11 × 22 × 5 × 7 × 11

= 26 × 33 × 53 × 73 × 113

Thus, xyzu = 22 × 3 × 5 × 7 × 11

= 4620

Dividing in turn by 1st, 2nd, 3rd and 4th equations, we get

u = 20, z = 11, y = 7, x = 3.

Hence, x = 3, y = 7, z = 11 and u = 20.

Example 4.46: Solve x + y + z = 12

x
2
 + y

2
 + z

2
= 50

And x
3
 + y

3
 + z

3
= 216.

Solution: Now, (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)

                      ⇒ 144 = 50 + 2(xy + yz + zx)

                      ⇒ xy + yz + zx = 47

Further, x
3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)

gives that   216 – 3xyz = 12(50 – 47) = 36 ⇒ 3xyz = 180 or xyz = 60

Thus, we have x + y + z = 12 ...(1)

xy + yz + zx = 47 ...(2)

And xyz = 60 ...(3)

From equation (3), yz = 
60

x
 and from equation (1), y + z = 12 – x

Substituting these values in equation (2), we get

60

x
 + x(12 – x) = 47

60 + 12x
2 – x3 = 47x

x
3 – 12x

2 + 47x – 60 = 0

i.e., (x – 3)(x2 – 9x + 20) = 0

(x – 3)(x – 4)(x – 5) = 0

∴ x = 3 or 4 or 5
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For x = 3,   yz = 20,   y + z = 9 ⇒ y = 5,   z = 4;  y = 4,   z = 5

For x = 4,   yz = 15,   y + z = 8 ⇒ y = 3,   z = 5;  y = 5,   z = 3

For x = 5,   yz = 12,   y + z = 7 ⇒ y = 3,   z = 4;  y = 4,   z = 3

Hence, the complete solution is

x = 3, y = 4, z = 5

x = 3, y = 5, z = 4

x = 4, y = 3, z = 5

x = 4, y = 5, z = 3

x = 5, y = 3, z = 4

And x = 5, y = 4, z = 3

Example 4.47: Solve  xy + x + y = 23

xz + x + z = 41

yz + y + z = 27.

Solution: The given equations are equivalent  to

xy + x + y + 1 = 24 i.e., (x + 1)(y + 1) = 24 ..(1)

xz + x + z + 1 = 42 i.e., (x + 1)(z + 1) = 42 ...(2)

And yz + y + z + 1 = 28 i.e., (y + 1)(z + 1) = 28 ...(3)

Multiplying equations (1), (2) and (3), we obtain

(x + 1)2(y + 1)2(z + 1)2 = 24×42×28

= 6 × 4 × 6 × 7 × 4 × 7

⇒ (x + 1)(y + 1)(z + 1) = ± 6 × 4 × 7 = ± 168

Dividing successively by equations (1), (2) and (3), we get

z + 1 = ± 7, y + 1 = ± 4 and x + 1 = ± 6

In other words x = 5 or – 7, y = 3 or – 5 and z = 6 or – 8

Thus, x = 5, y = 3, z = 6

Or, x = – 7, y = – 5, x = – 8.

CHECK YOUR PROGRESS

  Solve the following equations:

9. 5x – y = 3, y2 – 6x2 = 25

10. 3x + 4y = 18, 
1 1

x y
+  = 

5

6

11. 3x – 5y = 2, xy = 8

12. x + y = 30, xy = 216

13. x – y = – 18, xy = 1363

14. 5x + 2y = 8, 9x – 5y = 23
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4.6 SUMMARY

In this unit, you have learned that:

• An equation of degree 2 is called a quadratic equation.

• A quadratic equation is called pure if it does not contain single power of x.

In other words, in a pure quadratic equation, coefficient of x must be zero.

Thus, a pure quadratic equation is of the type ax2 + b = 0 with a ≠ 0.

• If the expression ax2 + bx + c can be factored into linear factors, then each

of the factors, put to zero, provides us with a root of the given quadratic

equation. Thus, if ax2 + bx + c = a(x – a) (x – b), then the roots of

ax2 + bx + c = 0 are a and b.

• An equation f (x) = 0 is called an identity if it is satisfied by all values of x.

4.7 KEY TERMS

• Quadratic equation: It is an equation of degree 2.

• Reciprocal equation: It is an equation like  x4 + x3 – 4x2 + x + 1 = 0,

where the terms are arranged according to the descending powers of x, the

coefficients of terms equidistant from first and last term is equal or differ in

sign.

4.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. x
2 – 8x – 48=0

⇒ x
2 – 12x + 4x – 48 = 0

x(x – 12) + 4(x – 12) = 0

(x – 12)  (x + 4) = 0

x = 12, – 4

2. 3x
2 + 10x + 3 = 0

⇒ 3x
2 + 9x + x + 3 = 0

⇒ 3x(x + 3) + 1(x + 3) = 0

⇒ (x + 3) (3x + 1) = 0

x = – 3 or – 
1

3
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3. The given expression

77( 2)

3

x

x

−

+
 – 21x = 7 + 

7 49

3

x

x

−

+

77(x – 2) – 21x(x + 3) = 7(x + 3) + 7x – 49

77x – 154 – 21x
2 – 63x = 7x + 21 + 7x – 49

21x
2 + 14x + 63x – 77x + 21 – 49 + 154 = 0

21x
2 + 126 = 0 ⇒ x2 + 6 = 0

x = 6± −  roots are imaginary

4.

215 16

4

x −
 = 7x – 3

⇒ 15x
2 – 28x – 12

⇒ 15x
2 – 16 – 28x – 4 = 0

⇒ 15x
2 – 30x + 2x – 4 = 0

15x(x –2) + 2(x – 2) = 0

(x – 2) (15x + 2) = 0

x = 2 or – 
2

15

5. p an q are  roots of equation 3x
2 + 6x + 2 = 0

⇒ p + q =  
6

3
−  = – 2  and pq = 

2

3

Roots of new equation are:

2
p

q
−  and 

2
q

p

−

sum of roots = 

2 2 3 3 3 3
p q p q p q

q p pq pq

− − − +
− = = −

= – 

3( ) 3 ( )p q pq p q

pq

 + − +
 
 

= –

3 2
( 2) 3 ( 2)

3

2 / 3

 
− − × − 

 
 
 

=– 
8 4

2 / 3

− + 
 
 

 = 6
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Product of roots = 

2 2
p q

q p

−
− ×  – pq =  

2

3

so, equation is

x
2 – (sum of roots) x + product of roots = 0

x
2 – 6x + 

2

3
 = 0

3x
2 – 18x + 2 = 0

6. If roots of equation 2x
2 + 3x + k = 0 are equal, then its discreminant should

be zero, i.e., (3)2 – 4 × 2 × k = 0

⇒ 9 – 8k = 0

k = 
9

8

7. α and β are roots of equation ax
2 + bx – c = 0

So, α + β = 
b

a
−  and αβ = 

c

a
−

If roots of equation are 
1 1

and
β +a b a bα +

= 
β

( ) ( β )

a b a b

a b a b

α

α

+ + +

+ +
 = 2 2

(α β) 2

(αβ) α β

a b

a ab ab b

+ +

+ + +

= 2 2
2

( / ) 2

( / ) (α β)

a b a b b

ba c a ab b
ac ab b

a

− +
=

−− + + +  
− + + 

 

= 2 2

b b

ac b b ac
= −

− − +

Product of roots =
2 2

1 1

( α ) ( β ) αβ (α+β)a b a b a ab b
=

+ + + +

= 
2 2

1 1 1

c b ac ac
a ab b

a a

= = −
− −   

× + − +   
   

New equation is : x2 – 
b

ac

 
− 
 

 x – 
1

ac
 = 0

⇒ ac x2 + bx – 1 = 0
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8. Let roots of equation be α and β.

Hence, α + β = 
b

a
−  and αβ = 

c

a

If roots are α2 and β2

Sum of roots α2 + β2 = (α + β)2 – 2αβ

    = 
2 2

2 2

2 2b c b ac

a a a

−
− =

Product of roots = α2β2 = (αβ)2 = 

2

2

c

a

New equation is:

x
2 – 

2 2

2 2

2
0

b ac c
x

a a

 −
+ = 

 

a
2
x

2 – (b2 – 2ac) x + c2 = 0

⇒ a
2
x

2 + (2ac – b2) x + c2 = 0

9. From given pair of equations:

5x – y = 3 and y2 – 6x
2 = 25

y = 5x – 3

Putting this value of y in second equation ,we get

(5x – 3)2 – 6x
2 = 25

25x
2 – 30x + 9 – 6x

2 – 25 = 0

19x
2 – 30x – 16 = 0

19x
2 – 38x + 8x – 16 = 0

19x(x – 2) + 8(x – 2) = 0

(x – 2) (19x + 8) = 0

Hence, x = 2 or – 
8

19

and y = 5 × 2 – 3 = 7 or 
5 8 97

3
19 19

− × −
− =

so,  x = 2, y = 7or x = 
8

19

−
, y = – 

97

19
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10. Given equations are:

3x + 4y = 18 and 
1 1 5

6x y
+ =

From second equation 
1

y
 = 

5 1

6 x
−  = 

5 6

6

x

x

−

⇒ y = 
6

5 6

x

x −

Putting this value of y in first equation, we get 
6

3 4 18
5 6

x
x

x
+ =

−

⇒ 3x(5x – 6) + 24x = 18(5x – 6)

⇒ 15x
2 – 18x + 24x = 90x – 108

⇒ 15x
2 – 84x + 108 = 0

⇒ 5x
2 – 28x + 36 = 0

⇒ 5x
2 – 10x – 18x + 36 = 0

⇒ 5x(x – 2) – 18(x – 2) = 0

⇒ (x – 2) (5x – 18) = 0

⇒ x = 2 or  
18

5

when x = 2, y = 
6 2 12

3
5 2 – 6 4

×
= =

×

when x = 
18

5
, y = 

18
6

108 95
18 5 12 5

5 – 6
5

×
= =

××

Hence, x = 2, y = 3, or x = 3
3

5
, y = 

4
1

5

11. Given equations are:

3x – 5y = 2 and xy = 8

Multiply by x on both the sides of first equation,

⇒ 3x
2 – 5xy = 2x

From second equation xy = 8

⇒ 3x
2 – 5 × 8 – 2x = 0

⇒ 3x
2 – 2x – 40 = 0

⇒ 3x
2 – 12x + 10x – 40 = 0

3x(x – 4) + 10(x – 4) = 0
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⇒ (x – 4) (3x + 10) = 0

⇒ x = 4  or  – 
10

3

when x = 4, y = 
8 8

2
4x

= =

when x = 
10 8 24 12 2

, 3 2
3 10 10 5 5

y− × = − = − = −
−

Hence, x = 4, y = 2;

 x = 
1 2

3 , 2
3 5

y− = −

12. Given equations are:

x + y = 30 and xy = 216

Multiplying both the sides by x of first equation;

x
2 + xy = 30x ⇒ x2 + 216 – 30x = 0 [since xy = 216]

⇒  x2 – 30x + 216 = 0

⇒  x2 – 18x – 12x + 216 = 0

⇒  x(x – 18) – 12(x – 18) = 0

⇒  (x – 18) (x – 12) = 0

⇒  x = 18 or 12

when x = 18, y = 
216

12
18

=

when x = 12, y = 
216

12
 = 18

Hence, x = 18, y = 12;  x =12, y =18

13. Given equations are:

x – y = – 18 and xy = 1363

Multiplying by x in both the sides of first equation,

x
2 – xy = – 18x ⇒ x2 – 1363 + 18x = 0

⇒ x
2
 + 18x – 1363 = 0

⇒ x
2
 + 47x – 29x – 1363 = 0

      x(x + 47) – 29 (x + 47)

⇒ (x + 47) (x – 29) = 0

x = – 47, or 29 and y = – 29, 47

Hence, x = 29, y = 47; x = – 47, y = – 29
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14. Given equations are:

5x + 2y = 8 and 9x – 5y = 23

Multiplying first equation by 5 and second by 2, we get

25x + 10y = 40 and

18x – 10y = 46

43x = 86

⇒ x = 2 and from first equation

5 × 2 + 2y = 8 ⇒  y = – 1

Hence, x = 2, y = – 1

4.9 QUESTIONS AND EXERCISES

Short-Answer Questions

1. What is a pure quadratic equation?

2. What is  discriminant?

3. When are roots of a quadratic equation real?

4. Find the value of the discriminant in equation

2

7 2
4 0

x x
+ + =

5. Find the value of C in the given equation so that roots are imaginary

3x + 2 + 
C

x
 = 0

Long-Answer Questions

  1.  Solve the following equations:

0 (i) (3x – 11)(x – 2) + (2x – 3)(x – 4) + 13x = 10(2x – 1)2 + 12

0 (ii)
2 2

2 2

x x

x x

+ −
−

− +  = 
5

6

(iii)

2 2

2 2

2 4

2 4

a x a x

a x a x

+ + −

+ − −
 = 

5x

a

  2.  Solve the following equations:

0  (i) 25 11 3 1x x− − +  = 2x

 (ii) 2 7 3 18x x+ + −  = 7 1x +

 (iii)

1/ 3 1/ 3
2 3 2 3

2 3 2 3

x x

x x

   + −
+   − −   

 = 

2

2

8(4 9)

13(4 9)

x

x

+

−
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  3.  Solve the following equations:

(i) (x – 7)(x – 3)(x + 5)(x + 1) = 1680

(ii) (x + 9)(x – 3)(x – 7)(x + 5) = 385

(iii)16x(x + 1)(x + 2)(x + 3) = 9

(iv) (x + 2)(x + 4)(x + 5)(x + 10) = 990x
2

[Hint. Rearranging, we get (x + 2)(x + 10)(x + 4)(x + 5) = 990x
2.

Put x2 + 20 = t]

  4.  Solve the following equations:

(i)  2 23 7 30 2 7 5x x x x− − + − −  = x + 5

(ii) 2 22 5 2 2 5 9x x x x+ − − + −  = 1

(iii) 2 23 2 9 3 2 4x x x x− + + − +  = 13

(iv) 2 21 1x ax x bx+ − + + −  = a b+

  5.  Solve the following equations:

(i)   32x + 9 = 10.3x

(ii)  4x – 3.2x+3 = – 128

(iii) 
3

3
3

x

x
+  = 4

  6.  Solve the following equations:

(i)  5(5x + 5– x) = 26

(ii) 10x
4 – 63x

3 + 52x
2 + 63x + 10 = 0

(iii) x4 – x3 + 5/4x
2 – x + 1 = 0

(iv) 4x
4 – 16x

3 + 7x
2 + 16x + 4 = 0

  7. If α, β are the roots of ax
2 + bx + c = 0 find the value of

(i)  
α β

β α
+ 0

(ii) α4 + β40

(iii) (α2 – β)2 + (β2 – α)2

(iv) α4β7 + α7β40

(v)  

2
α β

–
β α
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8. Find the condition that one root of ax
2 + bx + c = 0 shall be n times the other.

9. If r is the ratio of the roots of the equation

ax
2 + bx + c = 0 show that (r + 1)2 ac = b2

r

10. Show that the roots of x2 – 2ax + a2 – b2 – c2 = 0 are always real.

11. Prove that the roots of (a + c – b)x2 + 2cx + (b + c – a) = 0 are rational [a,

b, c are rational numbers].

12. Solve the following equations:

(i)   ax + by = 2, abxy = 1

(ii)  3x – 2y = 7, xy = 20

(iii)  x3 + y3 = 637, x + y = 13

(iv)  x3 – y3 = 218, x – y = 2

13. A horse and a cow were sold for Rs 3040 marking a profit of 25 per cent  on

the horse and 10 per cent on the cow. By selling them for Rs 3070, the profit

realized would have been 10 per cent on the horse and 25 per cent on the

cow. Find the cost price of each.

14. Demand for goods of an industry is given by the equation pq = 100, where p

is the price and q is quantity; supply is given by the equation 20 + 3p = q.

What is the equilibrium price and quantity?

15. Demand and supply equations are 2p
2 + q2 = 11 and p + 2q = 7. Find the

equilibrium price and quantity, where p stands for price and q for quantity.

16. In a perfect competition, the demand curve of a commodity is D = 20

– 3p – p2, and the supply curve is S = p – 1, where p is price, D is demand and

S is supply. Find the equilibrium price and the quantity exchanged.

17. A man’s income from interest and wages is Rs 500. He doubles his investment

and also gets an increase of 50 per cent in wages and his income increases to

Rs 800. What was his original income separately in terms of interest (I) and

wages (W).

18. Solve the following equations:

(i)   2x + y – 2z = 0, 7x + 6y – 9z = 0, x3 + y3 + z3 = 1728.

(ii)  3x + y – 5z = 0, 7x – 3y – 9z = 0, x2 + 2y
2 +  3z

2 = 23.

(iii) 9x + y – 8z = 0, 4x – 8y + 7z = 0, xy + yz + zx = 47.

19. Solve the following equations:

(i)   x + y + z = 6, x2 + y2 + z2 = 14, and 
2 3

y z
x + +  = 3.

(ii) 
1 1 1

x y z
+ +  = 9,

2 3

x y
+  = 13,   8x + 3y = 5

(iii) x(y + z) = 5,   y(z + x) = 8,   z(x + y) = 9.
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UNIT 5 COMPLEX NUMBERS

Structure

5.0 Introduction

5.1 Unit Objectives

5.2 Imaginary Numbers

5.2.1 Definition of Complex Number

5.3 Complex Numbers: Basic Characteristics

5.3.1 Geometric Representation of Complex Numbers

5.3.2 Complex Arithmetic

5.3.3 Operations on Complex Numbers

5.3.4 Graphical Representation

5.3.5 Quadratic Functions and their Graphs

5.3.6 Polynomial Functions and their Graphs

5.3.7 Division of Univariate Polynomials

5.3.8 Zeros of Polynomial Functions

5.3.9 Rational Functions and their Graphs

5.3.10 Polynomial and Rational Inequalities

5.4 Uses of Complex Numbers

5.4.1 History of Complex Numbers

5.4.2 Geometrical Representation of Conjugates

5.4.3 Geometric Interpretation of Addition and Multiplication Operations

5.4.4 Matrix Representation of Complex Numbers

5.5 Properties of Complex Numbers

5.5.1 Applications of Complex Numbers

5.5.2 Signal Analysis

5.6 Summary

5.7 Key Terms

5.8 Answers to ‘Check Your Progress’

5.9 Questions and Exercises

5.10 Further Reading

5.0 INTRODUCTION

We all are familiar with real numbers and use it in our number system. There is also

another important class of numbers termed as complex numbers, which consists

of imaginary as well as real numbers. In spite of the term imaginary, these numbers

are exceptionally used in various areas of science, such as electromagnetic theory,

relativity and quantum mechanics.

Girolamo Cardano was an Italian mathematician who first realized the need

of finding complex numbers. While solving cubic equations he came across

expressions that contained square root of a negative number. Thus, the concept of

an imaginary number took birth but this was accepted as a part of mathematical

concept by the work of Abraham De Moivre, Bernoullis and  Leonhard Euler,

who carried out studies on this topic in detail. De Moivre was a French-English
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mathematician, Bernoullis were mathematicians in a Swiss family and Euler was

also a Swiss mathematician. This term ‘imaginary’ was used by Rene Descartes in

17th century.

In this unit, you will learn about complex numbers, their history, their

geometrical and graphical representations and performing calculations in complex

arithmetic. This unit also discusses quadratic functions, polynomial functions, rational

functions with their graphs, matrix representation of complex numbers and important

properties of complex numbers.

5.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Understand complex numbers

• Describe the Argand plane

• Perform operations using complex numbers

• Explain quadratic functions, polynomial functions, rational function and their

graphs

• Discuss the properties of complex numbers

5.2 IMAGINARY NUMBERS

You will now learn about imaginary numbers. For example, take the quadratic

equation x2 + 1 = 0. It can also be written as x2 = –1. This equation has no real

solutions as every number becomes non-negative when squared. But if we define

that the square of imaginary number i is –1, then it is possible to find solution of

x2 + 1 = 0. In mathematics, one can describe the notions if they satisfy a specific

set of logically constant axioms. For example, the defined number i can also be

written as √–1, where the real numbers can be included to extend it along with

imaginary numbers. The simple method to perform is to describe the set of complex

numbers as the set of all numbers of form z = x + yi, where x and y are arbitrary

real numbers. Here, number x is termed as the real part and y as the imaginary

part of the complex number z.

5.2.1 Definition of Complex Number

Complex numbers can be represented in the form of fine geometric interpretation.

The real numbers can be viewed as a line on the real number line, similarly the

complex numbers can be viewed as a plane termed as the complex plane. Figure

5.1 shows how the complex number z = x + yi with the point (x, y) in the complex

plane can be represented:
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y

y

x
x

z = x + yi

Figure 5.1 Representation of Complex Number z = x + yi with the Point (x, y) in

the Complex Plane

Basically, there are two functional operations on complex numbers. First is termed

as complex conjugation and the second is the modulus, also famous as the

complex norm or absolute value. For a given complex number z = x + yi, one

can describe the complex conjugate of z (written as z) as the complex number z

= x
 
– yi such that in the complex plane, the point corresponding to z is (x, –y).

Geometrically, this represents the point (x, y) corresponding to z about the y-axis

as shown in Figure 5.2.

x x + yi = 
y

y

x
x

– y
z = x – yi

Figure 5.2 Y-axis
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In case of modulus, a given complex number z = x + yi denotes its modulus as |z|

and is given by the following formula:

|z| = √x2 + y2

As per the distance formula it is equal to the distance from the origin O =

(0, 0) up to the point P = (x, y). Hence, the complex number is considered as the

length of the line segment passing through the origin to the point in a complex

plane.

Rule for Zero: A complex number is equal to zero only when its real part and its

imaginary part are equal to zero. For example, a + bi = 0 if and only if a = 0 and

b = 0. Similarly, the complex numbers are equal if their real and imaginary parts

are equal.

CHECK YOUR PROGRESS

1. How can the quadratic equation x2 + 1 = 0 also be written as?

2. What is the rule for zero?

5.3 COMPLEX NUMBERS: BASIC

CHARACTERISTICS

A complex number has two parts, real and imaginary. A number is imaginary when

it is the square root of a negative real number. For example, if x2 = 1, then x = ±

√1 = ± 1. Such a square root has both real values. But if there is an equation

x2 + 1 = 0 → x2 = – 1 and hence, x = √–1 and this number is imaginary since there

is no real number that satisfies this condition then this number, given by √–1 is an

imaginary number and it is designated by using letter i.

A number with an expression containing two terms is known as binomial.

Thus, a complex number has two terms in which one is real and the other is

imaginary and is multiple of i. A complex number is symbolically expressed in the

form of a + bi or x + yi, where a, b, x and y are real numbers, and i is an imaginary

number given as i = √–1. This means that i2 = –1. Following are the complex

numbers:

4 + i, 2 – 5i, 0.5 + 3i and –7 – 3i

In a complex number, these two parts cannot be added or subtracted the way it is

done in case when all are real numbers.

The powers of i have repetition in a cycle:

...

i–3 = i

i–2 = –1

i–1 = –i

i0 = 1
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i1 = i

i2 = –1

i3 = –i

i4 = 1

i5 = i

i6 = –1

...

The same thing can be put in a generalized pattern for any integer n.

   i4n = 1

i4n + 1 = i

i4n + 2 = – 1

i4n + 3 = – i.

Observing the above, it can be concluded as:  in = in mod 4.

Example 5.1: Find the Value of i83.

Solution: We divide 83 by 4 and note the remainder; 83 = 20 × 4 + 3. Hence,

remainder is 3. Thus, i83 = i3 = i2.i = –i

Example 5.2: Find the value of (i72)2

Solution: (i72)2 = i144 = i4×36 = (i)36 = 1.

5.3.1 Geometric Representation of Complex Numbers

Real numbers are represented by points in a numerical line as shown in Figure 5.3.

A O B

– 4 – 3 – 2 – 1 0      1      2      3      4

Figure 5.3 Numerical Line

In Figure 5.3, point A refers to a number –3 which is on the left side of a number

line and hence a negative number. Point B refers to number 2 and O refers to

number 0 (zero). On the contrary the complex numbers are represented by points

in a numerical coordinate plane. To represent this, select a rectangular Cartesian

coordinate with equal scale on both the axes. The complex number a+ bi is

represented by point P with abscissa a and ordinate b as shown in Figure5.4.

This coordinate system is termed as a complex plane.

Y

P

X

r

a

b

0

Figure 5.4 Coordinate System
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Modulus of a complex number is a length of vector OP which represents the

complex number in a coordinate complex plane. Modulus of complex number

a+ bi is signed as 

| a+ bi |  or  by letter r and is equal to :

2 2
| | .r a bi a b= + = +

Conjugate complex numbers have the same modulus.

Argument of a complex number is the angle ϕϕϕϕ between x-axis and vector OP,

representing this complex number. Hence, tan ϕϕϕϕ = b/a.

Trigonometric form of a complex number. Abscissa a and ordinate b of the

complex number a + bi can be expressed by its modulus r and argument ϕϕϕϕ.

Then, a = r cos ϕ, b = r sin ϕ

a + bi = r(cos ϕ + i sin ϕ)

Operations with Complex Numbers Represented in the Trigonometric Form

1. z
1
 . z

2
 = [r

1
(cos ϕ

1
 + i sin ϕ

1
)] [r

2
(cosϕ

2
 + i sin ϕ

2
)] =

 = r
1
 . r

2
 [cos (ϕ

1
 + ϕ

2
) + i sin (ϕ

1
 + ϕ

2
)]

 2. z
1
/z

2
 = [r

1
(cos ϕ

1
 + i sin ϕ

1
)]/[r

2
(cos ϕ

2
 + i sin ϕ

2
)] =

= r
1
/r

2
 [cos(ϕ

1
 – ϕ

2
) + i sin (ϕ

1
 – ϕ

2
)]

 3. zn = [r(cos ϕ + i sin ϕ)]n  = rn (cos nϕ + i sin nϕ)

This is the famous Moivre’s formula.

4. (cos sin ) {cos[( 2 ) / ] sin[( 2 ) / ]}n nnz r i z k n i k n= ϕ+ ϕ = ϕ+ π + ϕ+ π

Here k is any integer. To receive n different values of the nth degree root of

z, it is essential to give n consecutive values for k, for example k = 0, 1, 2, …,

n – 1.

5.3.2 Complex Arithmetic

Addition and subtraction can be performed on complex numbers easily. To do

this, simply add or subtract the respective real and imaginary parts of each complex

number. For example, the sum of two arbitrary complex numbers z
1
 = x

1
 + y

1
 i

and z
2
 = x

2
 + y

2
 i is as follows: z

1
 + z

2
 = (x

1
 + x

2
) + (y

1 
+ y

2
) i and their difference

is given by z
1
 – z

2
 = (x

1
 – x

2
) + (y

1 
– y

2
) i.

Multiplication and division of complex numbers are very complex. To

describe complex multiplication the distributive property is used as follows:

(a + b) c = ac + bc and a (b + c) = ab + ac

When both these rules are applied we derive the additional property of foil rule as

follows:

(a + b)(c + d) = ac + ad + bc + bd
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Apply the foil rule for computing the product of the above given complex numbers

z
1
 and z

2
. If a = x

1
, b = y

1
 i, c = x

2
, and d = y

2
 i, then z

1
 z

2
 = (x

1
 + y

1
 i)(x

2
 + y

2

i) = x
1
 x

2
 + x

1
 y

2
 i + y

1
 x

2
 i + y

1
 y

2
 i2. If i2 = –1, then z

1
 z

2
 = (x

1
 x

2
 – y

1
 y

2
) +

(x
1
 y

2
 + y

1
 x

2
) i.

Using this formula any two complex numbers can be multiplied. The following

identity is verified using the above derived complex number definition:

| | .z zz=

Hence, the complex number is equal to the square root of the product of the

number and its complex conjugate. This definition is also used to describe complex

division. Division on complex numbers is very complex. For example, let the

quotients are z
1
/z

2
, where z

1
 and z

2
 are arbitrary complex numbers and z

2
 is nonzero.

When the numerator and denominator is multiplied by the complex conjugate of

z
2
, then the result is (z

1
/z

2
)(z

2
/z

2
) = z

1
z

2
 / |z

2
|2.

To divide two complex numbers in terms of the real and imaginary parts of z
1
 and

z
2
 is shown below:

1 1 1 1 2 1 2 2 1 1 2
2 2

2 2 2 2 2

( ) ( )z x y i x x y y x y x y i

z x y i x y

+ + + −
= =

+ +

Operations on complex numbers are like those on real numbers in many ways.

But there are two exceptions of these rules. Two exceptions to this are:

1. Addition of subtraction of the two terms of a complex number a + bi can

not be done and should be left as it is.

2. An expression i2 = –1, is against the general rule that product of two numbers

having same sign is positive. If we take i.i = i2 = –1. If we take it like i.i =

√–1.√–1 = √(–1)(–1) = √1 = 1. Two results are contradictory.

5.3.3 Operations on Complex Numbers

The following are the general rules for operations on complex numbers:

1. Equality: Two complex numbers are equal if their real parts and imaginary

parts are each equal. If two complex numbers c1 = x + yi and c2 = w + zi

and c1 = c2, this means  x + yi = w + zi and this leads to the fact that x =

w and y = z.

2. Addition: If there are two complex numbers a + bi and c + di and if they

are added together, their real parts are added together and the same applies

to their imaginary parts too. For example,

(a + bi) + (c + di) = (a + c) + (b + d)i

Here, the real part of first is added to the real part of the other and the imaginary

part of one is added to the imaginary part of the other.
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Example 5.3: If z
1
 =

 
(2 + 3i) and z

2
 = (5 – 9i), find z

1
 + z

2
.

Solution: z
1
 + z

2
 = (2 + 5) + (3 + (–9))i = 7 – 6i.

3. Subtraction: If one complex number c + di, is subtracted from another

complex number a + bi, then real part c, is subtracted from real part a, and

imaginary part d, is subtracted from the imaginary part b. This is shown as

below:

(a + bi) – (c + di) = (a – c) + (b – d)i

Example 5.4: If If z
1
 =

 
(3 + 11i) and z

2
 = (7 + 13i), find z

1
 − z

2
.

Solution: z
1
 − z

2 
= (3 + 11i) − (7 + 13i) = −4 −2i

4. Zero: If a complex number is zero, then both the parts are separately zero.

For example, if x +yi = 0, this means that x = 0 and y = 0.

5. Opposites: To find opposite of a complex number, change the sign of each

part. If a + bi is a complex number, its opposite id found by its negation,

i.e., as –(a + bi) that leads to –a + (–b)i = –a –bi. Opposite of a complex

number 7 – 4i is –7 + 4i.

6. Multiplication: Product of two complex numbers is also a complex number.

If z
1
 and z

2 
are two complex numbers where z

1
 =

 
x

1
 + y

1
i and z

2
 = x

2
 + y

2
i,

their product z
1
 × z

2
 is given by (x

1
 + y

1
i) × (x

2
 + y

2
i) = x

1
x

2 
+ x

1
y

2 
i +

 
y

1
x

2
i

+ y
1
y

2
i2. Since i2 = –1, y

1
y

2
i2 = –y

1
y

2
.

Thus, z
1
 × z

2
 = (x

1
x

2 
–y

1
y

2
) + (x

1
y

2 
+

 
y

1
x

2
)i and this too is a complex number

having (x
1
x

2 
–y

1
y

2
)

 
as its real part and  (x

1
y

2 
 +

 
y

1
x

2
)

 
as its imaginary part.

7. Conjugates: Every complex number has conjugate that is found just by

changing the sign of its imaginary part. If x + yi is a complex number its

conjugate is x – yi. Thus, x + yi and x – yi are conjugate pairs known as

complex conjugates. This is denoted by placing a bar over the symbol. If

z = x + yi, is a complex number, its conjugate is denoted as z x yi= −  and

z z×  is given by x2 + y2. Thus, product of a conjugate pair is always a real

number.

Example 5.5: A complex number is given as z = 7 + 5i. Find its conjugate and

also find the product of the conjugate pair.

Solution: If z = 7 + 5i then its conjugate is given by z  = 7 – 5i. Their product

z z×  is given by 72 + 52 = 49 + 25 = 77.

8. Division: If a complex number is divided by another complex number, it

gives a complex number. Thus, the result of division of one complex number

by another is also a complex number. If z
1
 =

 
x

1
 + y

1
i and z

2
 = x

2
 + y

2
i are

two complex numbers and z
1
 is divided by z

2+
 then, z

2
 can not be zero,

since division by zero is not allowed. Also, complex number in the

denominator side should be converted to a real number to perform this
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division. To do this multiplication is done by the complex conjugate of

denominator should be multiplied to both numerator as well as denominator.

If we are required to find z
1
/z

2
 we must first multiply conjugate of z

2
 to

numerator as well as denominator. One example will make it clear.

Example 5.6: Two complex numbers are given as; z
1
 =

 
5 + 15i and z

2
 = 4 + 3i.

Find z
1
/z

2
.

Solution: We have to find z
1
/z

2
 = (5 + 15i)/(4 + 3i). Complex conjugate of z

2
 is

4 – 3i. We multiply this to both, numerator as well as denominator and we get

z
1
/z

2
 = (5 + 15i)(4 – 3i)/(4 + 3i) (4 – 3i) = (20 – 15i + 60i – 45i2)/(42 – 32i2)

⇒ z
1
/z

2
 = (20 + 45 + 45i)/(16 + 9)

and hence, z
1
/z

2
 = 

65 45 13 9

25 5 5

i
i

+
= +

CHECK YOUR PROGRESS

3. What are the two parts of a complex number?

4. Which are those arithmetic operations that can be performed easily in

complex numbers and which are the ones that are complex?

5.3.4 Graphical Representation

Two parts of a complex number can be represented graphically by representing

one along the real axis (shown horizontally) and another imaginary axis, at positive

right angle to it. This is like presenting a point on a Cartesian plane by an ordered

pair (x, y). Thus, a complex number x + yi can be denoted as a coordinate pair

(x, y), as shown in Figure 5.5.

Imaginary axis

– 2 + 3i
B (–2, 3)

3 + 2i
A (3, 2)

Real axis

C (–1, –3)

–1 –3i
D (2, –4)

     2 –4i

Figure 5.5 Graphical Representation of Complex Number
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Argand Diagram

An Argand plane is a way to represent a complex number as points on rectangular

coordinate plane. This also known as complex plane in which x-axis is used for

real axis and imaginary axis is the y-axis. Argand plane is so named as an amateur

mathematician named Jean Robert Argand described the plane in his paper in the

year 1806. Some 120 years earlier a similar method was suggested by John Wallis.

His work was developed by Casper Wessel who published his paper in Danish

that was not the common language used for mathematics during that period. After

1895  his work was noticed, but by that time the name ‘Argand diagram’ was

known by a community of mathematicians. Figure 5.6 shows the position of a

complex number on Argand plane.

Im

y

r

z x iy =  + 

Re
x

Figure 5.6 Position of a Complex Number on an Argand Plane

On an Argand plane, the position of a point can be shown both in rectangular

coordinate system as well as polar coordinate system. A complex number z has

been shown as an ordered pair (x, y) on a Cartesian plane and as (r, θ) in polar

coordinates.

The point shown by z has length r and makes a positive angle of q from the

horizontal axis. Here, x = rcosθ and y = rsinθ. The angle θ is given as θ = tan–1

(y/x) since tanθ = y/x.

The distance of this point from the origin is given as r2 = x2 + y2. Here, r is

known as the modulus of the complex number z and is written as |z|. Thus, r = |z|

= √(x2 + y2). Now the entire thing can be presented in brief with the help of

Figure 5.7.
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Complex Numbers

Complex 
Conjugatecan be

may be
expressed
in

or

and
related
to

by the

with the
help of

Euler
Relationship

Trigonometric
Functions

Polar
Form

Multiplied and
Divided

Cartesian
Form

Rationalization

Figure 5.7 An Argand Plane

Thus, a complex number of the form z = x + yi or z = x + iy can also be written

as z = r(cosθ + isinθ) or z = |z|(cosθ + isinθ) where, x = rcosθ, y =rsinθ and

θ = tan–1(y/x). This formulae forms a link between algebraic and trigonometric

quantities. Here, θ is also known as argument of the complex number z and written

as θ = Arg(z) and r  is modulus of z and also known as absolute value.

Leonhard Euler in the year 1748 found a formula that in known as Euler’s

formula in his name that was used for complex analysis. This is given as below:

cosθ + isinθ = eiθ.

5.3.5 Quadratic Functions and their Graphs

The quadratic equations are of the form ax2 + bx + c = 0, where a, b and c are

considered as real-valued constants. The left part of this equation is a quadratic

function of the form f(x) = ax2 + bx + c and the graph of this quadratic function is

termed as parabola, which is a special type of curve. The simple parabola is

specified by the function f(x) = x2. Take the quadratic function f(x) = ax2 + bx +

c. The roots of this specific function are the results of the equation f(x) = 0 which

are given by the quadratic formula as,

x = (–b ± √b2 – 4ac) / 2a

The quantity D = b2 – 4ac is termed as discriminant of f(x) within the

radical. The sign of the discriminant, D, is used to determine the number of real

roots of f. When D is positive then f will have two distinct real roots, when D is

zero then f will have just one real root, and when D is negative then f will have no

real roots. First compute the roots of a quadratic equation before representing it

graphically.

Example 5.7: Graphically represent the quadratic function f(x) = x2 + x – 2.

Solution: By factorizing, we get the factors of f(x) as (x – 1)(x + 2). Hence, the

roots of f are 1 and –2. Now compute the values of f(x) for values of x close to

these roots. The following table sums up the results.
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Results of Quadratic Function f(x) = x2 + x – 2.

x f(x) 

−3 4 

−2 0 

−1 −2 

0 −2 

1 0 

2 4 

3 10 

Plot a smooth curve to connect these points. The following graph will be obtained.

y

x

10

8

6

4

2

0–3 –2 –1 1 2 3

–2

–4

Results of the Quadratic Function f(x) = x2 + x – 2

Example 5.8: Graphically represent the quadratic function f(x) = 2 + 2x – x2.

Solution: For finding the roots of f apply the quadratic formula x = (−b ± √b2 −
4ac) / 2a, where a = −1, b = 2 and c = 2 to obtain the following result:

x = (–2 ± √4 – (4)( –1)(2)) / (2)( –1)

   = (–2 ± √12)/ –2

   = 1 ± √3

Hence, the roots of f are 1 – √3≈ – 0.73 and 1 + √3 ≈ 2.73. Compute again the

values of f(x) for values of x close to these roots. The results are tabulated as

follows:
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Results of the Quadratic Function f(x) = 2 + 2x – x2

x f(x) 

−2 −6 

−1 −1 

−0.73 0 

0 2 

1 3 

2 2 

2.73 0 

3 −1 

4 −6 

Finally, plot these points and connect them by drawing a smooth curve. The following

graph will be obtained.

y

x

3

2

1

0

– 1

– 2

– 3

– 4

– 5

– 6

– 2 – 1 1 2 3 4

Graphical Representation of the Quadratic Function f(x) = 2 + 2x – x2

5.3.6 Polynomial Functions and their Graphs

This section explains the methodology to graph common polynomial functions.

The complexity of the graph depends on the degrees of polynomials growth. A

polynomial of degree n will have up to n real zeros so that its graph crosses the

x–axis n times. However, one can easily find the zeros of some polynomials by

simply plotting sufficient points. Reasonably exact graphs can be made for general

polynomials.
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Example 5.9: Graphically represent the polynomial f(x) = x3 – x.

Solution: Factorize f(x). Consider that f(x) = x (x2 – 1). According to rule if

a = 1 then the factors of x2 – 1 will be (x + 1) (x – 1). Hence, f(x) = x(x + 1)

(x – 1). The zeros of f will be at –1, 0 and 1. Computing the values of f(x) for

various close points, you will obtain the following table.

Result of the Quadratic Function f(x) = x3 – x

x f(x) 

−1.4 −1.344 

−1.2 −0.528 

−1.0 0.000 

−0.8 0.288 

−0.6 0.384 

−0.4 0.336 

−0.2 0.192 

0.0 0.000 

0.2 −0.192 

0.4 −0.336 

0.6 −0.384 

0.8 −0.288 

1.0 0.000 

1.2 0.528 

1.4 1.344 

Plot these points and connect them with a smooth curve to obtain the following

graph.

–1.5 –1.0 –0.5 0 0.5 1.0

1.5

1.0

0.5

0

y

x

–0.5

1.0

1.5

–

–

Graphical Representation of the Quadratic Function f(x) = x3 – x

Note: This graph is symmetric with reference to the origin because f is odd.
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Example 5.10: Graphically represent the polynomial f(x) = x4 – 10x2 + 9.

Solution: After factorizing this function we have f(x) = (x2 – 1)(x2 – 9) = (x + 1)

(x – 1)(x + 3)(x – 3). Hence, f will have zeros at ±1 and ±3. The values of f(x)

where x covers the range of zeros are listed in the following table. Here, values of

f(x) are rounded to the nearest tenth.

Results of the Polynomial f(x) = x4 – 10x2 + 9

x f(x) 

−3.5 36.6 

−3.0 0.0 

−2.5 −14.4 

−2.0 −15.0 

−1.5 −8.4 

−1.0 0.0 

−0.5 6.6 

0.0 9.0 

0.5 6.6 

1.0 0.0 

1.5 −8.4 

2.0 −15.0 

2.5 −14.4 

3.0 0.0 

3.5 36.6 

Plot these point and connect them to get the following graph.

–3 –2 –1 0 1 2 3
x

–10

–20

40

30

20

10

y

Graph of f(x)

Note: This graph is symmetric with reference to the y-axis because f is even.
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Example 5.11: Graphically represent the polynomial f(x) = x3 + x2 + 2x + 4.

Solution: It is difficult to factorize this polynomial. Hence, f(x) is computed for

certain small values of the argument.

Result of the polynomial f(x) = x3 + x2 + 2x + 4

x f(x) 

−3 −20 

−2 −4 

−1 2 

0 4 

1 8 

2 20 

The following graph is obtained after plotting the values.

x

y

–3 –2 –1 1 20

20

10

–10

–20

Graphical Representation of the Polynomial f(x) = x3 + x2 + 2x + 4

Note: Here, the function f(x) is neither even nor odd and so it has only one real

zero.
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5.3.7 Division of Univariate Polynomials

The following theorems are used for dividing univariate polynomials.

Theorem: If p
1
(x) and p

2
(x) are univariate polynomials, then there exist unique

polynomials q(x) and r(x) such that p
1
(x) = q(x) p

2
(x) + r(x) with deg(r) < deg(p

2
).

In this expression, the polynomial q(x) is termed as the quotient of the polynomials

p
1
(x) and p

2
(x) and the polynomial r(x) is termed as the remainder of p

1
(x) and

p
2
(x). For finding q(x) and r(x) long polynomial division method is used. 

Example 5.12: Given is polynomial p
1
(x) = 8x4 + 16x3 − 10x2 + 21x − 25. Find

the quotient and remainder of this polynomial divided by the polynomial

p
2
(x) = 2x2 + 3x − 1.

Solution: The polynomial division is done as follows:

2   +  3   – 1      8       16     – 10     + 21     –25
                        – – 2   + 4
                                      4     6 21
                                       
                                                  12  +23 – 5
                                                 18   6

                                                                  41    –31

x x x x x x4 3 2

8     1          
      –    +  
– 4         –6    + 2

–        2
     12   +     – 

  

x x x

x x x

x x x

x x

x x

x

4 3 2

3 2

3 2

2

2

4      +2         – 6
               
x x2

Hence, we get q(x) = 4x2 + 2x − 6 and r(x) = 41x − 31, where 8x4 + 16x3 −
10x2 + 21x − 25 = (4x2 + 2x − 6)(2x2 + 3x − 1) + 41x − 31. Its equivalent is,

4 3 2
2

2 2

8 16 10 21 25 41 31
4 2 6

2 3 1 2 3 1

x x x x x
x x

x x x x

+ − + − −
= + − +

+ − + −

There is a fine technique termed as synthetic division which is used to divide a

polynomial by a linear polynomial.

Example 5.13: Find the quotient and remainder of the polynomial p
1
(x) = x3 +

6x2 + 11x + 8 divided by the polynomial p
2
(x) = x + 2.

Solution: Use the following long polynomial division method:

           x + x x x +   2              16    + 11     8
                           – –2  
                                      4     
                                     
                                                   +
                                                 

                                                                 

3 + 2

x x

x x

x x

    x

x

3           
    +11
– 4         –8

 3    8
    – 3    –6

2

2

2

2

x x +2         +4          3
               

Hence, we get (x3 + 6x2 + 11x + 8) / (x + 2) = x2 + 4x + 3 + 2 / (x + 2).
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Synthetic division gives a short cut method for the same calculation. In synthetic

division, we just write the rows of numbers and not the powers of the variable x.

In the first/top row, the coefficients of the dividend are written which is preceded

to the left by the negative of the constant coefficient of the divisor divided by the

linear coefficient. In this case it is 1 and the result is −2. This is the number of root

which is being tested. Down two rows, write the leading coefficient of the dividend.

In the second row this coefficient is multiplied by the root −2 and the result is

written one space towards right. It is shown below. Then the corresponding

coefficient is added in the top row that is 6 to the result 4 in the third row. Now

multiply this number by the root to obtain −8 which is written in the second row. It

is continued till each row is completed up to the rightmost coefficient of the dividend

as shown below:

1 6 11 82

2 8 6

|1 4 3 2

−

− − −

As a result, the quotient is x2 + 4x + 3 and the remainder is 2.

5.3.8 Zeros of Polynomial Functions

Finding zeros of polynomial function is the important key of a function and is

termed as roots. These are the values of the variable x for f(x) = 0. Principally, it

is extremely useful in finding the zeros of a univariate polynomial whereas to find

the zeros of linear polynomials is completely trivial.  

Theorem: The linear polynomial x − a is a factor of the polynomial p(x) if and

only if a is a zero of f and also p(a) = 0.

Proof: Evidently if x − a is a factor of p(x) then p(a) should be zero. This factor

becomes zero when x = a. Consider p(a) = 0. As per Theorem, there exists

polynomials q(x) and r(x) with deg(r) < deg(x − a) = 1 such that p(x) = q(x)

(x − a) + r(x). Because deg(r)=0, hence, r(x) should be equal to a constant r. As

a result we have p(x) − q(x) (x − a) + r. But we know that p(a) = q(a) (a − a) +

r = r = 0, where r = 0 and p(x) = q(x) (x − a). Hence, x − a is factor of p(x).

Theorem: Let p(x) = c
n
xn + c

n–1
xn–1 + ... + c

2
x2 + c

1
x + c

0
 be a polynomial of

degree n  with integer coefficients and leading coefficient c
n
 nonzero. Again, let a

be a rational root of p(x) then there exists integers j and k with j dividing c
0
 and k

dividing c
n
 such that a = j / k.

Proof: According to the above Theorem, a is zero of p(x) if and only if x − a is a

linear factor of p(x). Because a is rational, hence a must have the form j / k for

some integers j and k with k nonzero. So, x − a = x − j/k is a linear factor of p(x).

But this implies that (k)(x − a) = (k)(x − j/k) = kx − j is also a linear factor of p(x).

Let q(x) = p(x)/(kx − j). Now q(x) is a polynomial of degree n − 1 with integer
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coefficients, so that we have q(x) = b
n–1

xn-1 + ... + b
2
x2 + b

1
x + b

0
. But p(x) =

(b
n–1

xn-1 + ... + b
2
x2 + b

1
x + b

0
)(kx − j) = c

n
xn + c

n–1
xn-1 + ... + c

2
x2 + c

1
x + c

0
,

imply that kb
n–1

 = c
n
 and −jb

0
 = c

0
. Thus, j divides c

0
 and k divides c

n
 as claimed.

Example 5.14: Find the rational zeros of the polynomial p(x) = x3 + x2 − 4x − 4.

Solution: According to above mentioned Theorem, the possible rational zeros of

p(x) are ±1, ±2 and ±4. Each of these zeros is tested by synthetic division till one

is found. The following is the result:

1 1 4 4 1 1 4 41 1

1 2 2 1 0 4

| |1 1 02 2 6 4 0

− − − −−

− −

− − −

Notice that 1 is not a zero of p(x) instead −1 is. We also have p(x) = (x + 1)

(x2 − 4) = (x + 1)(x + 2)(x – 2) to get the other two zeros, namely −2 and 2. It is

simply obtained by factoring the quotient x2 − 4.

Example 5.15: Find the rational zeros of the polynomial p(x) = 2x3 − x2 − x − 3.

Solution: As per the Theorem, the possible rational zeros of p(x) are ±1, ±3, ±1/

2 and ±3/2. Each of these zeros is tested using synthetic division till one is found.

The following is the result:

Notice that 3/2 is the only rational zero of p(x). We also have the factorization

p(x) = (x − 3/2)(2x2 + 2x + 2) = (2x − 3)(x2 + x + 1). Actually, 3/2 is the only real

zero of p(x) as the cofactor x2 + x + 1 does not has real zeros.
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5.3.9 Rational Functions and their Graphs

Rational functions have the common form f(x) = p(x)/q(x), where p and q are

polynomials. Every time q(x) is zero and p(x) is not, f(x) remains undefined. This

results as singularity of f(x). For values of x close to the singular value, |f(x)|

becomes very large. Hence, while graphing rational functions first get its singularities.

Example 5.16: Graphically represent the function f(x) = 1/(1 − x2).

Solution: First compute the singularities of function before you graph f. The

denominator is 1 − x2, whose factors are (1 + x) (1 − x) and has zeros at x = ±1.

Because the numerator of f is never zero, hence these values must be the singularities

of f. Draw vertical dashed lines, termed as asymptotes for these values of x, as

shown in the following figure.

–2 –1 1 20

–1

–2

–3

3

2

1

x

y

Graphical Representation of the Function f(x) = 1/(1 – x2)

Now prepare a table on values of f(x) vs values of x. Fundamentally, different

values of x are used which are close to the singular values. These values are used

to construct the table. The following table reproduces the values for constructing a

graph along with the asymptotes.
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Values for Constructing Graph along with the Asymptotes

x f(x) 

−2.0 −0.33 

−1.8 −0.45 

−1.6 −0.64 

−1.4 −1.04 

−1.2 −2.27 

−1.0 −  

−0.8 2.78 

−0.6 1.56 

−0.4 1.19 

−0.2 1.04 

0.0 1.00 

0.2 1.04 

0.4 1.19 

0.6 1.56 

0.8 2.78 

1.0 −  

1.2 −2.27 

1.4 −1.04 

1.6 −0.64 

1.8 −0.45 

2.0 −0.33 

This table is graphically presented as follows:

x

y

–2 –1 0 1 2

3

2

1

–1

–2

–3

Graph Showing f(x) vs Values of x
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Example 5.17: Graphically represent the function f(x) = (x2 – 4) / (3x2 + 8x – 3).

Solution: Using the trial and error find the denominator factors of 3x2 + 8x – 3

which are (x + 3)(3x – 1) and has zeros at x = –3 and x = 1/3, whilst the numerator

has zeros at x = ±2. Now compute f(x) for values of x starting at –4 and ending at

4 along with additional values near x = 1/3 and x = 3. The following table shows

these values which are represented in a graph.

Additional Values

x  f(x )    x  f(x )  

− 4 .0  0 .9 2    − 0 .5  0 .6 0  

− 3 .5  1 .4 3    0 .0  1 .3 3  

− 3 .4  1 .6 9    0 .1  1 .8 4  

− 3 .3  2 .1 1    0 .2  3 .0 9  

− 3 .2  2 .9 4    0 .3  1 1 .8 5  

− 3 .1  5 .4 5      

− 3 .0  −    0 .4  − 5 .6 5  

− 2 .9  − 4 .5 5    0 .5  − 2 .1 4  

− 2 .8  − 2 .0 4    1 .0  − 0 .3 8  

− 2 .7  − 1 .2 1    1 .5  − 0 .1 1  

− 2 .6  − 0 .7 8    2 .0  0 .0 0  

− 2 .5  − 0 .5 3    2 .5  0 .0 6  

− 2 .0  0 .0 0    3 .0  0 .1 0  

− 1 .5  0 .2 1    3 .5  0 .1 3  

− 1 .0  0 .3 8    4 .0  0 .1 6  

–4 –3 –2 –1 0 1 2 3 4
x

–2

–4

–6

6

4

2

y

Graphical Representation of the Function f(x) = (x2 – 4/3x2 + 8x – 3)
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5.3.10 Polynomial and Rational Inequalities

This section explains the method for solving polynomial and rational inequalities.

Polynomial inequalities can be represented in anyone of the four forms p(x) > 0,

p(x) ≥ 0, p(x) ≤ 0 or p(x) < 0, where p(x) is a polynomial. To solve these inequalities

we first solve the equation p(x) = 0 for each of the zeros of p. These are considered

as the endpoints of the solution to the consequent inequality. After finding them, it

is easy to determine that between which pairs of endpoints the solutions belong.

The following example will make the concept clear.

Example 5.18: Solve the polynomial inequality x2 < 4.

Solution: Take the square root of both sides. Notice that |x| < 2 or equivalently,

–2 < x < 2. Thus, the solution set is the interval (–2, 2), whose graph is shown as

follows:

–5        –4        –3         –2       –1           0          1          2          3          4          5

Numerical Line showing Polynomial Inequality x2 < 4

Example 5.19: Solve the polynomial inequality x2 + x ≥ 2.

Solution: First solve the corresponding polynomial equation x2 + x = 2 or

equivalently p(x) = x2 + x – 2 = 0. Using trial and error, we find that p(x) has the

factorization (x + 2) (x – 1) implying that its zeros are at –2 and 1 which are the

endpoints of the solution set.

Every interval is tested with these endpoints. The first interval is (–∞, –2).

To check that this interval is part of the solution set one of its points is tested. Start

with x = –3. The left side of the inequality becomes (–3)2 – 3 = 6, which is

evidently greater than or equal to –2, hence the inequality holds for this value of x.

Hence, it is clear that the interval (–∞, –2) is part of the solution set.

Now test the interval (–2, 1). By plugging x = 0, we check whether inequality

x2 + x ≥ 2 holds. Evidently it does not, because the left side becomes zero when

0 is substituted for x and 0 is not greater than or equal to 2. Hence, it is clear that

the interval (–2, 1) is not part of the solution set.

Finally test the interval (1, ∞). Take the value as x = 2. By plugging into the

left side of the inequality it becomes 22 + 2 = 6 ≥ 2. Hence, it is clear that this

interval is part of the solution set. As there are no more endpoints the entire solution

set is found, which is (–∞, –2) ∪ (–1, ∞). This can be represented in the graphical

form as follows:

–5        –4        –3         –2       –1           0          1          2          3          4          5

Graphical Representation of the Resultant Solution Set
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Example 5.20: Solve the polynomial inequality x2 – x ≤ 1.

Solution: First solve the corresponding polynomial equation x2 – x = 1 or

equivalently p(x) = x2 – x – 1 = 0. By applying the quadratic formula the solutions

to this equation are found as x = (1 ± √5)/2, which are approximately – 0.618 and

1.618. Incidentally, the number (1 + √5)/2 is an important mathematical constant

and is termed as the golden mean and is denoted by the Greek letter ϕ.

Test all the three intervals. First test the interval (–∞, –0.618) by testing

x = –1. By plugging this into the left side of the inequality we get 2, which is not

less than or equal to –1. Hence, it is clear that the solution set does not contain the

interval (–∞, –0.618).

Test the next interval (–0.618, 1.618). To do this test the point x = 0. By

substituting this into the left side of the inequality we get 0, which is evidently less

than or equal to 1. Hence, it is clear that the solution set contains the interval

(–0.618, 1.618).

Finally, test the last interval (1.618, ∞). We test the value x = 2. Plugging

into the left side of the inequality, we obtain 2, which is not less than or equal to

–1. Hence, it is clear that the solution set does not contain this interval.

Putting together, we get the solution set which consists of the sole interval

((1 – √5)/2, (1 + √5)/2) ≈  (–0.618, 1.618). The following figure shows the graph

of this solution set.

–2                          –1                            0                            1                            2

Graph of the Solution Set ((1 – √5)/2, (1 + √5)/2) ≈ (–0.618, 1.618)

Example 5.21: Solve the polynomial inequality x3 - 6x2 + 11x > 6.

Solution: The corresponding polynomial equation is p(x) = x3 – 6x2 + 11x – 6

= 0. Using synthetic division find the solutions of this equation which are x = 1, x

= 2 and x = 3.

Now there are four intervals for testing. First test the interval (–∞, 1). The

easy point in this interval to text is x = 0. Substituting x = 0 into the inequality, we

get 0 on the left side which is obviously not greater than 6. Hence, it is clear that

the interval (–∞, 1) does not belong to the solution set.

Test the next interval (1, 2). By plugging in x = 3/2 to the left side, we get

51/8 = 6 3/8, which is greater than 6. Hence, it is clear that the solution set contains

the interval (1, 2).

Test the third interval (2, 3). By plugging in x = 5/2, we find the left side of

the inequality becomes 45/8 = 
5

5
8

, which is less than 6, whence the inequality

does not hold for this point and thus the solution set does not contain the

interval (2, 3).
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The last interval we must test is (3, ∞). Plugging in x = 4 to the left side of

the inequality, we obtain 12, which is greater than 6. Thus the solution set contains

the interval (3, ∞).

Putting everything together, we see that the solution set is equal to (1, 2)

*”(3, ∞). A graph of this solution set is shown in the following figure:

–5        –4        –3        –2        –1          0          1           2          3          4          5

Graph Showing Solution Set is Equal to (1, 2)∪ (3, ∞)

In every example we have looked at so far, the intervals we have tested

have alternated between belonging and not belonging to the solution set. This is

usually but not always the case. Below is an exception to this rule.

Example 5.22: Solve the polynomial inequality x3 – 3x < 2.

Solution: The corresponding polynomial equation is p(x) = x3 – 3x – 2 = 0. By

means of synthetic division, we find that p(x) factors as (x + 1)2 (x – 2). Thus, the

endpoint intervals are x = –1 and x = 2.

The first interval we must test is (–∞, –1). Plugging in x = –2, we obtain –2

on the left side of the inequality, which is less than 2, whence the solution set

contains the interval (–∞, –1).

The next interval to test is (–1, 2). Plugging in x = 0, the left side the inequality

becomes 0, which is once again less than 2. Thus, the solution set also contains the

interval (1, 2). Note that it does not contain –1, however, since substituting –1 into

the left side of the inequality yields 2, which is not less than 2.

The final interval to test is (2, ∞). Plugging in x = 3, we see that the left side

of the inequality becomes 18, which is not less than 2. Thus, we see that the

interval (2, ∞) is not part of the solution set.

Putting everything together, we see that the solution set is (–∞, –1)∪
(–1, 2). The graph for this is shown as follows:

–5        –4        –3        –2        –1          0          1           2           3          4          5

Graph for Solution Set (– ∞, –1)∪ (–1, 2)

It is somewhat difficult to solve rational, but the strategy is the same. To do

this, one has to keep track of both the zeros and the singularities of the rational

function and proceed in the same way as discussed before.

Example 5.23: Solve the rational inequality (x2 – 4) / (3x2 + 8x – 3) ≥ 0.

Solution: We have already graphed the rational function f(x) = (x2 – 4) / (3x2 +

8x – 3), hence we know the values of x which is f(x) > 0. Though, it is good to

assume that the graph is not accessible. The approach is to first find all zeros and

singularities of f(x). Because the numerator factors are (x + 2) (x – 2) and the
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denominator factors are (x + 3) (3x – 1), we observe that the zeros of f are at

–2 and 2 and the singularities are –3 and 1/3. These are the endpoints of the

intervals.

Test the first interval (–∞, –3). Because f(–10) = 96 / 217 > 0, hence, it is

clear that this interval belongs to the solution set.

Test the second interval (–3, –2). We have f(–5/2) = –17/4 < 0, hence, it is

clear that this interval does not belong to the solution set.

Test the third interval (–2, 1/3). Since f(0) = 4/3 > 0, hence it is clear that

this interval belongs to the solution set.

Now test the fourth interval (1/3, 2). We have f(1) = –3/8 < 0, hence it is

clear that this interval does not belong to the solution set.

Finally test the last interval (2, ∞). We have f(10) = 96 / 377 > 0, hence it

is clear that this interval belongs to the solution set.

Putting the findings together, we find the solution set (–∞, –3] ∪ [–2, 1/3]

∪ [2, ∞). The graph for the obtained solution set is shown as follows:

–5        –4       –3        –2        –1          0         1          2          3          4         5

Graph for the Obtained Solution Set (– ∞, – 3] ∪ [–2, 1/3] ∪ [2, ∞)

CHECK YOUR PROGRESS

5. Can two parts of a complex number be represented graphically?

6. Which is the important key of a function?

7. What do you understand by the singularity of f(x)?

8. How can polynomial inequalities be represented?

5.4 USES OF COMPLEX NUMBERS

Complex number finds use in a number of scientific and engineering calculations.

While solving an equation, if the solution yields square root of a negative number,

there it indicates presence of a complex number. In the field of electrical engineering

and telecommunication complex numbers come. Although a complex number

involves imaginary number it has correspondence to the real word situation. As

you have seen, a complex number can be given a graphical addition in place of

direct arithmetic addition.

5.4.1 History of Complex Numbers

Reference for square roots negative real numbers was found in the work of Heron

of Alexandria, the Greek during 1st century AD. He felt it by considering volume

of the frustum of a pyramid that was considered impossible. These problems of

square root of negative number became very prominent by work of Italian



Complex Numbers

NOTES

Self-Instructional Material 249

mathematicians in finding third and fourth roots of polynomials. Although main

interest was in finding the real solution but, they were also interested in manipulating

square roots of negative numbers. The term ‘imaginary’ for such quantities was

first coined by Rene Descartes during the period of 17th century. This term was

used to mean derogatory. In the period of 18th century, work of Leonhard Euler

and Abraham De Moivre established many concepts related to complex numbers.

Famous formulae, known as De Moivre’s theorem was given on his name.

According to De Moivre’s theorem:

(cosθ + isinθ)n = cosnθ + isinnθ

Where θ is any complex number or real number and n is an integer.

This formula is considered very important as it connects a complex numbers

to trigonometry. The expression ‘cos θ + i sin θ’ is also known as ‘cis θ’ in short.

We may expand LHS of the De Moivre’s formula and after comparing both

the parts (assuming that θ is a real number), expressions can be derived for cos(nθ)

and sin(nθ) involving terms of cos(θ) and sin(θ). Also, this formula can be used for

finding nth roots of unity. We can find a complex number z such that zn = 1.

Existence of complex numbers was accepted only after its geometrical

interpretation was given by Caspar Wessel in the year 1799. Same thing was

discovered later after several years. This was popularized by Gauss (Carl Friedrich

Gauss) and due to his efforts complex numbers theory got further expansion.

Wessel’s memoir was given in Proceedings of the Copenhagen Academy in

1799. This work is complete and very clear in content that can be compared to

any modern work. He considered sphere, and provided a quaternion theory that

can develop spherical trigonometry. In the year 1806 Argand got the same idea

that was suggested by Wallis and also issued a paper on this subject. Argand’s

essay provided a base on which present day graphic presentation of complex

numbers works. In 1832 Gauss published his work on it and brought it in

mathematical world, giving it a prominence. Mention should also be made of the

excellent small treatise presented by Mourey in the year 1828. In this period

foundations were laid scientifically for the theory of directional numbers.

Different terms were used by different mathematician in relation to complex

number.  Argand called cosθ + isinθ the direction factor, and the modulus. Cauchy,

in the year 1828 called the same as the reduced form and Gauss used i for square

root of –1 and (imaginary number) and used the term complex number for a

binomial term a + bi, and named a2 + b2 as the norm. Hankel, in the year 1867,

used direction coefficient, for expression ‘cosθ+isinθ’. The term absolute value,

for modulus, was used by Weierstrass.

After Cauchy and Gauss, many names came as high ranking contributors.

Of these, following names are worth mention:

Contribution was made in 1844 by Kummer, in 1845 by Kronecker,

Leopold and Peacock and Scheffler in 1845, 1851 and 1880 and Bellavitis in

1835 and 1852.
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Also, Scheffler (1845, 1851, 1880), Bellavitis (1835, 1852), Peacock

(1845), and De Morgan (1849) were great contributors. Name of Möbius is also

worth mention for his numerous works on geometric applications of complex

numbers. The work of Dirichlet helped expansion of this theory that included

complex numbers for primes, congruences, reciprocity, and like that as was for

real numbers.

A set of complex number, closed under addition, subtraction and

multiplication, is known as complex ring or field. Study was made for complex

numbers having form a + bi. [a and b being integral, or rational and i is here either

of the two roots of x2 + 1 = 0]. Ferdinand Eisenstein who was his student, carried

study of the type a + bω, where ω is the complex cubic root (complex root of

x3 – 1 = 0). There were other classes too for such cases and these are known as

cyclotomic fields for complex numbers. These have been derived from equation

xk – 1 = 0, by finding roots of unity in case of higher values of k. Such generalization

was mainly due to the work Kummer, who invented ideal numbers, expressed as

geometrical entities by Felix Klein in 1893. General theory for fields had been

created by Évariste Galois. He carried out study on fields that was generated by

roots of a polynomial equation in one variable.

Complex numbers, thus have a field, known as complex number field and is

denoted by C. A complex number x + iy, is denoted as an ordered pair of (x, y).

A number whose imaginary part is zero is a real number. A number, whose real

part is zero, is a purely imaginary number and a number whose neither part is zero

is a complex number. Viewing this way every real number is a subset of complex

number. Or stated in terms of field one may say that R, the field of real numbers is

a subfield of C. Thus, we identify a real number x as complex number (x, 0) and

an imaginary number may be denoted as complex number (0, y).

In the field of complex number C, we have:

Additive identity as (0,0), multiplicative identity as (1,0), additive inverse of

(x, y) as (– x, – y)

Thus, complex field C can also be defined as the topological closure of

algebraic numbers and the algebraic closure of R.
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5.4.2 Geometrical Representation of Conjugates

Imaginary
Axis

y
z = x + iy

r

Real

Axis
x

–y

0

r

z = x – iy

Figure 5.8 Geometrical Representation of Conjugate

When both the parts are positive the point falls in the first quadrant of the

plane. A conjugate of a complex number is found by changing the sign of its imaginary

part (Figure 5.8). Thus, conjugate of x +yi is x – yi and it falls in fourth quadrant

and is the mirror image of x +yi. Its reverse is also true. The complex number

x – yi is the conjugate of x + yi.

Both these complex numbers are known as conjugate pairs.

Thus, a complex number is viewed as a point on two dimensional Cartesian

coordinate system. Speaking in terms of vector, it shows a position vector. Such a

representation is also known as Argand diagram.

One may view addition of two complex numbers as addition of two vectors.

Multiplication with a fixed complex number may be viewed as simultaneous rotation

and stretching.

Also, multiplication with i signifies 90 degrees counter clockwise rotation.

The geometric interpretation of i2 = –1 is a sequence of two rotations of 90 degree

resulting in rotation of 180 degree. The fact, (–1) × (–1) = +1 can be interpreted

as combination of two rotations of 180 degree each.

5.4.3 Geometric Interpretation of Addition and

Multiplication Operations

Operations of addition and multiplication have already been described algebraically

above. The same can be shown on an Argand plane as Argand diagram

(Figures 5.9 and 5.10).

Suppose A and B are two complex numbers shown as points on Argand

plane. Let X be the addition of these two and hence, X = A + B. O is the origin.

Summation of these two complex number on Argand diagram shows two congruent

triangles having vertices 0, A, B, and X, B, A. Thus, addition of two complex
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numbers and addition of two vectors are same. A complex number on an Argand

plane may also be taken as a vector and its position as position vector.

B X

O A

Figure 5.9 Graphical Addition

Multiplication of two complex numbers can also be shown graphically by

representing them on Argand plane. We take same two complex number A and B

and let X be their product such that X = AB. Product of two complex number is

also a complex number and hence, this can also be shown on the Argand plane.

Let this point be shown as X. Let O be the origin. Hence, product of A and B is a

point X such that triangles having vertices 0, 1, A, and 0, B, X, for similar triangles.

X B

A

O
1

Figure 5.10 Graphical Multiplication

Such geometric interpretations translate algebraic problems into geometrical

problem and geometric problems can also be analysed algebraically. For example,

Absolute value, conjugation and distance

We recall that absolute value (or modulus or magnitude) of a complex

number is given by |z| = √(a2 + b2), if z = a + ib. When z = r(cosθ + isinθ) = reiθ,

it is defined as |z| = r.

Absolute value can be used to find distance between two points. If z and w

are two complex numbers, then distance between then is given by distance function

d(z, w) = |z – w|. Equation for regular geometrical figures such as straight lines,

circles and conic sections can also be written in terms of complex numbers. Addition,

subtraction, multiplication and division involving complex numbers are continuous

operations.

The complex argument of z = reiθ is θ. It is is unique modulo 2π. That

means that any two values of complex argument θ always differ by an integral

multiple of 2π.

Square Root of a Complex Number

Square root of a complex number is also a complex number.

Let, z = x + iy be a complex number.
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Square root of z, i.e., z  will also be a complex number. Let a + ib = z .

Value of a and b, the square root is found.

Squarring both the sides, we get,

(a + ib)2 = x + iy

⇒ a2 + i 2ab + z2b2 = x + iy

⇒ a2 – b2 + i 2ab = x + iy

Equating real and imaginary part together, we get,

a2

 
– b2 + i 2ab = x + iy

Equating real and imaginary part together, we get,

a2 – b2 = x ...(5.1)

   2 ab = y ...(5.2)

We  know that,

(a2 + b2)2 – 4a2b2 = (a2 – b2)2

⇒ (a2 + b2)2 – (2ab)2 = x2

⇒ (a2 + b2)2 – y2 = x2

(a2 + b2)2 = x2 + y2

   a2 + b2 = ± 2 2
x y+ ...(5.3)

Adding equations (1) and (3) we get,

        2a2 = x ± 2 2
x y+

subtracting (1) from (3) we get,

        2b2 = ± 2 2
x y+ – x

We get the value of a and b. Hence square root of x + iy can be found.

Example 5.24: Find square root of a complex number given by z = – 3 + 4i

Solution: Let x + iy = ± z  = ± 3 4i− +

Squaring both the sides,

 (x + iy)2 = – 3 + 4i

⇒    x2 + i2xy + i2y2 = – 3 + 4i

⇒    x2 – y2 + i 2xy = – 3 + 4i

Equating real and imaginary parts

  x2 – y2 = – 3 ...(1)

      2xy = 4 ...(2)

          (x2 + y2)2 = (x2 – y2)2 + 4x2y2
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  = (–3)2 + (4)2 = 9 + 16 = 25

⇒         (x2 + y2)2 = 25

  x2 + y2 = ± 5 ...(3)

Adding equations (1) and (3), we get

2x2 = – 3 ± 5 = 2 or – 8

⇒        x = ± 1 or ± 2i

Since x is a real number, we take x = ± 1, and discard imaginary value.

2xy = 4 given

    y = 
4

2x
 = 

4

2 ( 1)× ±
 = ± 2.

When x = 1, y = 2,

x = –1, y = –2

We get square root of –3 + 4i

as

(1) 1 + 2i,

(2) – 1 – 2i,

Hence, square root of – 3 + 4i

is ± (1 + 2i).

Example 5.25: Find square root of a complex number given as:

z = 7 + 24i

Solution: Let

x + iy = ± 7 24i+

Squarring both the sides,

x2 + i2xy + i2y2 = 7 24i+

⇒   x2 – y2 + i 2xy = 7 + 24i

   x2 – y2 = 7 ...(1)

        2xy = 24 ...(2)

 (x2 + y2)2 = (x2 – y2)2 + 4x2y2

    = (x2 – y2)2 + (2xy)2

= (7)2 + (24)

= 49 + 576

= 625

x2 + y2 = ± 25 ...(3)
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Adding equations (1) and (3), we get

      2x2 = 7 ± 25

      2x2 = – 32 x –18

         x2 = 16 or –9

We take x2 = 16 since x is a real number.

Hence,           x = ± 4

From equation (2) we get the value of y = 
24 24

3,
2 2 ( 4)x

= = ±
× × ±

Hence, square root of 7 + 24i is ± (4 + 3i).

5.4.4 Matrix Representation of Complex Numbers

Complex number can be represented in matrix form. Every complex number may

be put as 2 × 2 matrix having entries for real numbers that stretches and rotates

points of the plane. Every such matrix has the form

where a, b ∈ R (set of real numbers). Since sum and product of

two matrices are complex numbers, this can also be represented in this form.

A matrix that is non-zero is invertible, and such inverse also has this form. Thus,

matrices having such form denote a field. Such matrices may be written as:

This form of matrix suggests that the real number 1 can be identified with an

identity matrix  and an imaginary unit number i with  that is rotated by

a positive 90 degrees rotation (counter-clockwise). Square of such a 2×2 matrix

has a determinant value of –1.

In a similar way absolute value of a complex number can also be shown as

a determinant value of the matrix that expresses a complex number. If a complex

number z, is expressed as matrix this equals square root of the determinant value

as shown below: 

Even transformation of a plane can also be shown. Such transformation

causes rotation of points by an angle that equals the argument of the complex

number, having length multiplied by a factor that equals the absolute value of the

complex number. Viewing this way conjugate of a complex number z denotes

rotation by same angle as that of z with real axis, but in opposite direction and its

length also scales in the same manner as z. This operation corresponds to transpose

of a matrix that corresponds to z.

In case a matrix has complex numbers instead of real as elements of the

given matrix resulting algebra is that of the quaternions.
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5.5 PROPERTIES OF COMPLEX NUMBERS

Real Vector Space

As you have seen, a complex number also represents a vector and a set of all such

complex number, denoted by C, is a real vector space in two dimensions. Ordering

as found with real numbers does not apply to complex numbers in case of arithmetic

addition and hence C cannot have an ordered field. As a generalized statement, a

field having imaginary number cannot be ordered.

Mapping of R-linear function C → C assumes the general form as given

below:

Here, a and b are complex coefficients and can be written symbolically as

a, b ∈ C.

Here, function given as:  denotes rotations that is also combined

with scaling, But the function  denotes reflections that are combined

with scaling.

Solutions of Polynomial Equations

A root of a polynomial p is a complex number z satisfying the equation p(z) = 0.

An n-degree polynomials having coefficients real or complex, has exactly n complex

roots. This is the Fundamental Theorem of Algebra, and this also tells that complex

numbers are defined for an algebraically closed field.

Complex Analysis

The study of functions of a complex variable is known as complex analysis and

has enormous practical use in applied mathematics as well as in other branches of

mathematics. Often, the most natural proofs for statements in real analysis or even

number theory employ techniques from complex analysis (see prime number theorem

for an example). Unlike real functions which are commonly represented as two

dimensional graphs, complex functions have four dimensional graphs and may

usefully be illustrated by color coding a three dimensional graph to suggest four

dimensions, or by animating the complex function’s dynamic transformation of the

complex plane.

5.5.1 Applications of Complex Numbers

Complex number finds various applications in many fields of science and

engineering. It is widely used in the field of control theory in electrical engineering

and telecommunication .

Control Theory

In most of the control theory in the field of telecommunication, transformation is

done from the domain of time to that of frequency. Laplace transform is used in the

field of electrical engineering for such transformations. Poles and zeros of the
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system are analyzed in complex plane. Complex plain is used in analysis of the

Nyquist plot, root locus and Nichols plot techniques.

Position of poles and holes are of special importance in the root locus method.

Situations, such as position of poles and holes with respect of quadrants is especially

important. These may lie in the left and right half planes. This is same as knowing

whether real part is greater than or less than zero. If a system has poles: 

In right half of the plane - it is unstable,

All in left half of the plane - it is stable,

Falling on imaginary axis – it is marginally stable.

Also, if a system contains zeros in right half of plane, it is called non minimum

phase system.

5.5.2 Signal Analysis

In the filed of electrical engineering and telecommunication, signal analysis is done

using complex numbers to describe signals that vary periodically. Absolute value

or modulus of |z| corresponds to the amplitude and argument arg(z) as phase of a

sine wave having some given frequency.

Fourier transform and Fourier analysis is done for writing a given signal

having real value as a sum of many periodic functions, often written as the part

having real of complex functions of the form f(ε) = zeiwt. Here, ω denotes angular

frequency that is equal to 2πf, where f denotes frequency. Complex number z

does encoding of phase and amplitude.

In the fields of electrical engineering, such technique is utilized by varying

currents and voltages. In electrical systems, resistances offered by resistors are

taken as real valued and those offered by capacitors and inductors are taken as

imaginary. These three that offer combined resistance as known by another name,

impedance. Resistances offered by inductors and capacitors are known by another

name reactance.

If impedance is denoted by Z as combination of resistance R, and combined

reactance of inductor and capacitor X, then Z is denoted as a complex number as:

Z = R + i X.

Electrical engineering texts use j in place of i for showing imaginary quantity.

Improper Integrals

Complex number is used in the field of applied sciences for finding improper

integrals that are real-valued, and complex-valued functions are used for this.

There are several methods to do the same.

Quantum Mechanics

In the field of quantum mechanics also complex numbers are of importance. The

underlying theory has been built on Hilbert spaces (a space having infinite

dimensions) over C.
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Relativity

Taking time variable as imaginary use of formulas for finding metric on space time

becomes simpler.

Applied Mathematics

In solution of differential equations all complex roots r of characteristic equation is

found first for a linear differential equation. Attempts to solve for the base function

is made after this using base functions on the form f(t) = ert.

Fluid Dynamics

Complex functions, in fluid dynamics are used for describing potential flow in two

dimensions.

Fractals

Some fractals known as Julia set and Mandelbrot set are plotted in the complex

plane.

CHECK YOUR PROGRESS

9. What is a complex ring or field?

10. What is complex analysis?

5.6 SUMMARY

In this unit, you have learned that:

• Girolamo Cardano was an Italian mathematician who first realized the need

of finding complex numbers. While solving cubic equations, he came across

expressions that contained square root of a negative number. Thus, the

concept of an imaginary number took birth. However, this was accepted as

a part of mathematical concept by the work of Abraham De Moivre,

Bernoullis and Leonhard Euler, who carried out studies on this topic in

detail. De Moivre was a French-English mathematician, Bernoullis were

mathematicians in a Swiss family and Euler was also a Swiss mathematician.

This term ‘imaginary’ was used by Rene Descartes in 17th century.

• If we define that the square of imaginary number i is –1, then it is possible to

find solution of x2 + 1 = 0. In mathematics, one can describe the notions if

they satisfy a specific set of logically constant axioms. For example, the

defined number i can also be written as √–1, where the real numbers can

be included to extend it along with imaginary numbers. The simple method

to perform is to describe the set of complex numbers as the set of all numbers

of form z = x + yi, where x and y are arbitrary real numbers. Here, number

x is termed as the real part and y as the imaginary part of the complex

number z.
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• Basically, there are two functional operations on complex numbers. First is

termed as complex conjugation and the second is the modulus, also famous

as the complex norm or absolute value. For a given complex number z =

x + yi, one can describe the complex conjugate of z (written as z) as the

complex number z = x
 
– yi such that in the complex plane, the point

corresponding to z is (x, –y).

• In a complex number, when the real part and its imaginary part are equal to

zero, then only the complex number is equal to zero. For example, a + bi

= 0 if and only if a = 0 and b = 0. Similarly, the complex numbers are equal

if their real and imaginary parts are equal.

• A complex number has two parts, real and imaginary. A number is imaginary

when it is the square root of a negative real number. For example, if x2 = 1,

then x = ± √1 = ± 1. Such a square root has both real values. But if there is

an equation x2 + 1 = 0 → x2 = – 1 and hence, x = √–1 and this number is

imaginary since there is no real number that satisfies this condition, then this

number, given by √–1, is an imaginary number and it is designated by using

letter i.

• Modulus of a complex number is a length of vector OP which represents

the complex number in a coordinate complex plane.

• Two parts of a complex number can be represented graphically by

representing one along the real axis (shown horizontally) and the other along

imaginary axis, at positive right angle to it. This is like presenting a point on

a Cartesian plane by an ordered pair (x, y).

• An Argand plane is a way to represent a complex number as points on

rectangular coordinate plane. This also known as complex plane in which

x-axis is used for real axis and y as imaginary axis. Argand plane is so

named as an amateur mathematician named Jean Robert Argand described

the plane in his paper in the year 1806.

• On an Argand plane, the position of a point can be shown both in rectangular

coordinate system as well as polar coordinate system. A complex number z

has been shown as an ordered pair (x, y) on a Cartesian plane and as (r, iθ)

in polar coordinates.

• The quadratic equations are of the form ax2 + bx + c = 0, where a, b and

c are considered as real-valued constants along with a non-zero. The left

part of this equation is a quadratic function of the form f(x) = ax2 + bx + c

and the graph of this quadratic function is termed as parabola, which is a

special type of curve. The simple parabola is specified by the function

f(x) = x2.

• The complexity of the graph depends on the degrees of polynomials growth.

A polynomial of degree n will have up to n real zeros so that its graph

crosses the x-axis n times. However, one can easily find the zeros of some

polynomials by simply plotting sufficient points. Reasonably exact graphs

can be made of general polynomials.
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• In synthetic division, we just write the rows of numbers and not the powers

of the variable x. In the first/top row, the coefficients of the dividend are

written which is preceded to the left by the negative of the constant coefficient

of the divisor divided by the linear coefficient.

• Finding zeros of polynomial function is the important key of a function,

termed as roots. These are the values of the variable x for f(x) = 0. Principally,

it is extremely useful in finding the zeros of a univariate polynomial, whereas

to find the zeros of linear polynomials is completely trivial.  

• Rational functions have the common form f(x) = p(x)/q(x), where p and q

are polynomials. When q(x) is zero and p(x) is not, f(x) remains undefined.

This results as singularity of f(x). For values of x close to the singular value,

|f(x)| becomes very large. Hence, while graphing rational functions first check

its singularities.

• Polynomial inequalities can be represented in any one of the four forms,

p(x) > 0, p(x) ≥ 0, p(x) ≤ 0 or p(x) < 0, where p(x) is a polynomial. To

solve these inequalities, we first solve the equation p(x) = 0 for each of the

zeros of p. These are considered as the endpoints of the solution to the

consequent inequality. After finding them, it is easy to determine that between

which pairs of endpoints the solutions belong.

• Complex number finds use in a number of scientific and engineering

calculations. While solving an equation, if the solution yields square root of

a negative number, it indicates the presence of a complex number. Although

a complex number involves imaginary number, it has correspondence to the

real, word situation. As you have seen, a complex number can be given a

graphical addition in place of a direct arithmetic addition.

• A complex number also represents a vector and a set of all such complex

numbers, denoted by C, is a real vector space in two dimensions. Ordering

as found with real numbers does not apply to complex numbers in case of

arithmetic addition and hence C cannot have an ordered field. As a generalized

statement, a field having imaginary number cannot be ordered.

• The study of functions of a complex variable is known as complex analysis.

It has enormous practical use in applied mathematics as well as in other

branches of mathematics.

5.7 KEY TERMS

• Imaginary number: It is the square root of a negative real number.

• Binomial number: It is a number with an expression containing two terms.

• Argand plane: It is a way to represent a complex number as points on a

rectangular coordinate plane.
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5.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The quadratic equation x2 + 1 = 0 can also be written as x2 = –1.

2. According to the rule for zero, when the real part and the imaginary part of

a complex number are equal to zero, then only the complex number is equal

to zero.

3. The two parts of a complex number are real and imaginary.

4. The arithmetic operations that can be performed easily on complex numbers

are addition and subtraction and the ones which are complex are

multiplication and division.

5. Yes, two parts of a complex number can be represented graphically.

6. Finding zeros of polynomial function is the important key of a function.

7. Rational functions have the common form f(x) = p(x)/q(x), where p and q

are polynomials. Every time q(x) is zero and p(x) is not, f(x) remains

undefined. This results as singularity of f(x).

8. Polynomial inequalities can be represented in any one of the four forms

p(x) > 0, p(x) ≥ 0, p(x) ≤ 0 or p(x) < 0, where p(x) is a polynomial.

9. A set of complex number, closed under addition, subtraction and

multiplication, is known as complex ring or field.

10. The study of functions of a complex variable is known as complex analysis.

5.9 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Write a short note on imaginary numbers.

2. Find the value of i393.

3. Find Z
1
 × Z

2
 when Z

1
 = 3 + i and Z

2
 = 7 + 3i

4. Find the square root of 3 + 4i.

5. Write a short note on Argand diagram.

6. Find Z
1
/Z

2
 when Z

1
 = 4 + 3i and Z

2
 = 2 + 5i

7. What is complex number rotation of a point (2, 9) on  an Argand plane?

8. Find the modulus of Z, when Z = 12 + 5i.

9. Find the argument of the complex number z = 12 + 5i.

10. Write a short note on signal analysis.



262   Self-Instructional Material

Complex Numbers

NOTES

Long-Answer Questions

1. Explain the general rules for performing operations on complex numbers.

2. Graphically represent the polynomial f(x) = x4 – 10x2 + 9.

3. Explain the zeros of polynomial functions.

4. Explain the operations of addition and multiplication and on an Argand plane.

5. Discuss the matrix representation of complex numbers.

6. Graphically represent the function f(x) = 1/(1 – x2).

7. Solve the rational inequality (x2 – 4) / (3x2 + 8x – 3) ≥ 0.

8. Find square root of i.

9. A complex number is given by 6 + 8i. Find its modulus and argument.

10. Represent the complex number 6 + 8i in trigonometric and exponential

forms.

5.10 FURTHER READING

Khanna, V.K, S.K. Bhambri, C.B. Gupta and Vijay Gupta. Quantitative

Techniques. New Delhi: Vikas Publishing House.

Khanna, V.K, S.K. Bhambri and Quazi Zameeruddin. Business Mathematics.

New Delhi: Vikas Publishing House.
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